Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_J=80°C$</td>
<td>66</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J=80°C$</td>
<td>84</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>$I_{C pulse}$</td>
<td>I_t limited by T_J max</td>
<td>320</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_J=80°C$</td>
<td>158</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J=80°C$</td>
<td>240</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_J≤150°C$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GE}=15V$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J max</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Neutral Point FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{max}</td>
<td>$T_J=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_J=80°C$</td>
<td>26</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J=80°C$</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>$I_{F SM}$</td>
<td>$I_p=8,3ms \text{, sin } 180°$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>f_I</td>
<td></td>
<td>370</td>
<td>A *s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{R RM}$</td>
<td>I_t limited by T_J max</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_J=80°C$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J=80°C$</td>
<td>66</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J max</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{max}$ $T_h=80°C$ $T_c=80°C$</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=T_{max}$ $T_h=80°C$ $T_c=80°C$</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPmax}</td>
<td>I_i limited by T_{max}</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$ $T_h=80°C$ $T_c=80°C$</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_h=80°C$ $T_c=80°C$</td>
<td>85</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_i=150°C$ $V_{CC}=15V$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td></td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_j</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j=25°C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>$T_j=T_{max}$ $T_h=80°C$ $T_c=80°C$</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_h=80°C$ $T_c=80°C$</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$I_L=8.3ms$, sin 180° $T_j=25°C$</td>
<td>325</td>
<td>A</td>
</tr>
<tr>
<td>I_2t-value</td>
<td>I_2t</td>
<td></td>
<td>440</td>
<td>A²s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PRM}</td>
<td>20kHz Square Wave</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$ $T_h=80°C$ $T_c=80°C$</td>
<td>45</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_h=80°C$ $T_c=80°C$</td>
<td>68</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_j</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(Tj$_{max}$ - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>$I=2s$ DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE(th)}</td>
<td>V_{CE}=V_{GE}</td>
<td>0.002</td>
<td>5.80</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE(sat)}</td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{FSS}</td>
<td></td>
<td>8</td>
<td>1200</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{f_{on}}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>R_{goff}=8Ω</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{f_{off}}</td>
<td>R_{gon}=8Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>f=1MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{ge}</td>
<td></td>
<td>15</td>
<td>960</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Neutral Point FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RHM}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td>R_{gon}=8Ω</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>R_{goff}=8Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dE_{rec}/dt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td>1.61</td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{GE}$</td>
<td>0.0008</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>15</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{oss}</td>
<td></td>
<td>50</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td></td>
<td>20</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{gon}=8 \Omega$</td>
<td>±15</td>
<td>0.0008</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{goff}=8 \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f=1MHz$</td>
<td>0</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>25</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td></td>
<td>15</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness=50um $\lambda=1$ W/mK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half Bridge FWD								
Diode forward voltage	V_{F}	30	$T=25°C$	1.5	2.23	3.4	V	
Reverse leakage current	I_{r}	1200	$T=25°C$	100			µA	
Peak reverse recovery current	$I_{rr(max)}$						A	
Reverse recovery time	t_{rr}	$R_{gon}=8 \Omega$	±15	0.0008	350	41		
Reverse recovered charge	Q_{rr}	$R_{goff}=8 \Omega$						µC
Peak rate of fall of recovery current	$d_{di/dc(max)}$	$di/dc(max)$						A/µs
Reverse recovery energy	E_{rec}							mWs
Thermal resistance chip to heatsink per chip	R_{thJH}	Thermal grease thickness=50um $\lambda=1$ W/mK						K/W

Thermistor						
Rated resistance	R	$T=25°C$	22000		Ω	
Deviation of R100	$\Delta R/R$	$R100=1486 \Omega$			%	
Power dissipation	P	$T=25°C$	200		mW	
Power dissipation constant		$T=25°C$	2		mW/K	
B-value						K
Vincotech NTC Reference						B
Buck
half bridge IGBT and neutral point FRED

Figure 1
Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ \degree C \)
- \(V_{CE} \) from 6 V to 16 V in steps of 1 V

Figure 2
Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ \degree C \)
- \(V_{CE} \) from 6 V to 16 V in steps of 1 V

Figure 3
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)
- \(T_j = 25 \ \degree C \)
- \(T_j = T_{jmax} - 25 \ \degree C \)

Figure 4
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 250 \ \mu s \)
Figure 5

Typical switching energy losses
as a function of collector current

\[E = f(I_c) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{Son} = 2 \, \Omega \)
- \(R_{Goff} = 2 \, \Omega \)

Figure 6

Typical switching energy losses
as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_c = 40 \, \text{A} \)

Figure 7

Typical reverse recovery energy loss
as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{Son} = 2 \, \Omega \)

Figure 8

Typical reverse recovery energy loss
as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_c = 40 \, \text{A} \)
Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_c = 40 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

Al
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω

Buck
half bridge IGBT and neutral point FRED
Buck

half bridge IGBT and neutral point FRED

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω
Buck

half bridge IGBT and neutral point FRED

Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)$

![Graph](image1.png)

At

- $T_j = 25/125^\circ C$
- $V_{CE} = 350 \text{ V}$
- $V_{GE} = \pm 15 \text{ V}$
- $I_F = 40 \text{ A}$
- $R_{gon} = 2 \text{ \Omega}$

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})$

![Graph](image2.png)

At

- $T_j = 25/125^\circ C$
- $V_{GE} = \pm 15 \text{ V}$
- $I_F = 40 \text{ A}$
- $V_{GE} = 350 \text{ V}$

Figure 19

IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

![Graph](image3.png)

At

- $D = 0.5$
- $R_{\text{shJH}} = 0.60 \text{ KW}$

Figure 20

FRED transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

![Graph](image4.png)

At

- $D = 0.5$
- $R_{\text{shJH}} = 1.61 \text{ KW}$

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.7E+00</td>
</tr>
<tr>
<td>0.28</td>
<td>2.4E-01</td>
</tr>
<tr>
<td>0.16</td>
<td>6.7E-02</td>
</tr>
<tr>
<td>0.04</td>
<td>8.5E-03</td>
</tr>
<tr>
<td>0.02</td>
<td>5.6E-04</td>
</tr>
</tbody>
</table>

FRED thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>9.8E+00</td>
</tr>
<tr>
<td>0.30</td>
<td>1.1E+00</td>
</tr>
<tr>
<td>0.80</td>
<td>1.8E-01</td>
</tr>
<tr>
<td>0.28</td>
<td>3.3E-02</td>
</tr>
<tr>
<td>0.11</td>
<td>5.6E-03</td>
</tr>
<tr>
<td>0.07</td>
<td>3.8E-04</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \degree C \]

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \text{ V} \]

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \degree C \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At
\[T_j = 150 \degree C \]
Buck

half bridge IGBT and neutral point FRED

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

\[V_{GE} = f(Q_g) \]

At

- \(D \) = single pulse
- \(T_h = 80 \) °C
- \(V_{GE} \leq 15 \) V
- \(T_j = T_{j\text{max}} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

\(I_C = 40 \) A

240V

960V
Boost

neutral point IGBT and half bridge FRED

Figure 1
Typical output characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

At

$\tau_p = 250 \mu$s

$T_j = 25^\circ C$

V_{GE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

At

$\tau_p = 250 \mu$s

$T_j = 125^\circ C$

V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

At

$\tau_p = 250 \mu$s

$V_{CE} = 10$ V

Figure 4
Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

<table>
<thead>
<tr>
<th>V_F (V)</th>
<th>I_F (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

At

$\tau_p = 250 \mu$s

$T_j = T_{jmax} - 25^\circ C$

$V_{CE} = 10$ V
Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 41 \, A \)

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 41 \, A \)

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 41 \, A \)
Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
- $T_J = 125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 8 \, \Omega$
- $R_{goff} = 8 \, \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_G)$

With an inductive load at
- $T_J = 125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $I_C = 41 \, A$

Figure 11
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 8 \, \Omega$

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $I_C = 41 \, A$
Boost
neutral point IGBT and half bridge FRED

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current](image)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of gate resistor](image)

At
- \(T_j = 25/125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_f = 41 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current](image)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_f = 41 \) A
- \(V_{GE} = \pm 15 \) V

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of gate resistor](image)

At
- \(T_j = 25/125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_f = 41 \) A
- \(V_{GE} = \pm 15 \) V
Boost
neutral point IGBT and half bridge FRED

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{GE} = 350 \, V \]
\[V_{FB} = \pm 15 \, V \]
\[R_{son} = 8 \, \Omega \]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{GE} = 350 \, V \]
\[I_f = 41 \, A \]
\[V_{FB} = \pm 15 \, V \]

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{son} = 1,30 \, KW \]

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04</td>
<td>9,0E+00</td>
</tr>
<tr>
<td>0,17</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>0,62</td>
<td>1,7E-01</td>
</tr>
<tr>
<td>0,31</td>
<td>3,9E-02</td>
</tr>
<tr>
<td>0,12</td>
<td>6,7E-03</td>
</tr>
<tr>
<td>0,06</td>
<td>4,1E-04</td>
</tr>
</tbody>
</table>

Figure 20
FRED transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{son} = 1,55 \, KW \]

FRED thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,06</td>
<td>3,9E+00</td>
</tr>
<tr>
<td>0,30</td>
<td>3,8E-01</td>
</tr>
<tr>
<td>0,77</td>
<td>7,8E-02</td>
</tr>
<tr>
<td>0,28</td>
<td>1,2E-02</td>
</tr>
<tr>
<td>0,14</td>
<td>1,2E-03</td>
</tr>
</tbody>
</table>
Figures 21 and 22: Power dissipation as a function of heatsink temperature.

Figure 21

IGBT

Power dissipation as a function of heatsink temperature

$$P_{tot} = f(T_h)$$

At

$$T_j = 175 \degree C$$

Figure 22

IGBT

Collector current as a function of heatsink temperature

$$I_C = f(T_h)$$

At

$$T_j = 175 \degree C$$

$$V_{GE} = 15 \text{ V}$$

Figures 23 and 24: Power dissipation as a function of heatsink temperature.

Figure 23

FRED

Power dissipation as a function of heatsink temperature

$$P_{tot} = f(T_h)$$

At

$$T_j = 150 \degree C$$

Figure 24

FRED

Forward current as a function of heatsink temperature

$$I_F = f(T_h)$$

At

$$T_j = 150 \degree C$$
Thermistor

Figure 1
Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]

Figure 2
Typical NTC resistance values

\[R(T) = R_{25} \cdot e^{\left(\frac{B_{25000}}{T - 25} - \frac{1}{R_{25}} \right)} \] [Ω]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R (Ω)</th>
<th>T (°C)</th>
<th>R (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55</td>
<td>5344.47</td>
<td>30</td>
<td>7839</td>
</tr>
<tr>
<td>-50</td>
<td>1952.73</td>
<td>40</td>
<td>11574</td>
</tr>
<tr>
<td>-45</td>
<td>13464.73</td>
<td>50</td>
<td>7796</td>
</tr>
<tr>
<td>-40</td>
<td>9200.76</td>
<td>60</td>
<td>6457</td>
</tr>
<tr>
<td>-35</td>
<td>6451.12</td>
<td>70</td>
<td>3791</td>
</tr>
<tr>
<td>-30</td>
<td>4567.84</td>
<td>80</td>
<td>2307</td>
</tr>
<tr>
<td>-25</td>
<td>3274.65</td>
<td>90</td>
<td>1491</td>
</tr>
<tr>
<td>-20</td>
<td>2285.77</td>
<td>100</td>
<td>840</td>
</tr>
<tr>
<td>-15</td>
<td>1757.05</td>
<td>120</td>
<td>272</td>
</tr>
<tr>
<td>-10</td>
<td>1390.14</td>
<td>125</td>
<td>253</td>
</tr>
<tr>
<td>-5</td>
<td>966.18</td>
<td>150</td>
<td>1998</td>
</tr>
<tr>
<td>0</td>
<td>760.63</td>
<td>95</td>
<td>1718</td>
</tr>
<tr>
<td>5</td>
<td>570.68</td>
<td>100</td>
<td>1485</td>
</tr>
<tr>
<td>10</td>
<td>447.64</td>
<td>105</td>
<td>1299</td>
</tr>
<tr>
<td>15</td>
<td>390.31</td>
<td>110</td>
<td>1733</td>
</tr>
<tr>
<td>20</td>
<td>276.54</td>
<td>115</td>
<td>982</td>
</tr>
<tr>
<td>25</td>
<td>220.00</td>
<td>120</td>
<td>861</td>
</tr>
<tr>
<td>30</td>
<td>170.35</td>
<td>125</td>
<td>759</td>
</tr>
</tbody>
</table>
Switching Definitions BUCK IGBT

General conditions
\[T_j = 125 \, ^\circ\text{C} \]
\[R_{	ext{on}} = 8 \, \Omega \]
\[R_{	ext{off}} = 8 \, \Omega \]

Figure 1 half bridge IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{\text{Eoff}} \)
\(t_{\text{doff}} = 0.28 \, \mu\text{s} \)
\(t_{\text{Eoff}} = 0.63 \, \mu\text{s} \)

\(V_{\text{GE}(0\%) } = -15 \, \text{V} \)
\(V_{\text{GE}(100\%) } = 15 \, \text{V} \)
\(V_{\text{CE}}(100\%) = 700 \, \text{V} \)
\(I_{\text{C}(100\%) } = 40 \, \text{A} \)

Figure 2 half bridge IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{\text{Eon}} \)
\(t_{\text{don}} = 0.13 \, \mu\text{s} \)
\(t_{\text{Eon}} = 0.23 \, \mu\text{s} \)

\(V_{\text{CE}(1\%) } = 3 \, \text{V} \)
\(V_{\text{CE}(90\%) } = 0.15 \, \text{V} \)
\(V_{\text{CE}(90\%) } = 0.2 \, \text{V} \)
\(V_{\text{CE}(10\%) } = 0.25 \, \text{V} \)

Figure 3 half bridge IGBT
Turn-off Switching Waveforms & definition of \(t_f \)
\(V_{\text{CE}}(10\%) = 2,3 \, \text{V} \)
\(V_{\text{CE}}(60\%) = 2,4 \, \text{V} \)
\(V_{\text{CE}}(40\%) = 2,5 \, \text{V} \)
\(V_{\text{CE}}(10\%) = 2,6 \, \text{V} \)

Figure 4 half bridge IGBT
Turn-on Switching Waveforms & definition of \(t_r \)
\(V_{\text{CE}}(1\%) = 2,8 \, \text{V} \)
\(V_{\text{CE}}(10\%) = 2,9 \, \text{V} \)
Switching Definitions BUCK IGBT

Figure 5

Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 28.05$ kW
- $E_{off} (100\%) = 1.65$ mJ
- $t_{Eoff} = 0.63 \mu s$

Figure 6

Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 28.05$ kW
- $E_{on} (100\%) = 0.70$ mJ
- $t_{Eon} = 0.23 \mu s$

Figure 7

Gate voltage vs Gate charge (measured)

- $V_{GEoff} = -15$ V
- $V_{GEon} = 15$ V
- $V_{C}(100\%) = 700$ V
- $I_{C}(100\%) = 40$ A
- $Q_g = 1556.37$ nC

Figure 8

Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d} (100\%) = 700$ V
- $I_{d} (100\%) = 40$ A
- $I_{RM} (100\%) = -43$ A
- $t_{rr} = 0.04 \mu s$
Switching Definitions BUCK IGBT

Figure 9
Neutral point FRED

Turn-on Switching Waveforms & definition of \(t_{Qrr} \)

\(t_{Qrr} = \) integrating time for \(Q_{rr} \)

\(I_d(100\%) = 40 \) A

\(Q_{rr}(100\%) = 0.95 \) \(\mu \)C

\(t_{Qrr} = 0.08 \) \(\mu \)s

Figure 10
Neutral point FRED

Turn-on Switching Waveforms & definition of \(t_{Erec} \)

\(t_{Erec} = \) integrating time for \(E_{rec} \)

\(P_{rec}(100\%) = 28.05 \) kW

\(E_{rec}(100\%) = 0.12 \) mJ

\(t_{Erec} = 0.08 \) \(\mu \)s

Figure 11
BUCK stage switching measurement circuit

Measurement circuit

\begin{align*}
I_d(100\%) & = 40 \text{ A} \\
Q_{rr}(100\%) & = 0.95 \text{ } \mu\text{C} \\
t_{Qrr} & = 0.08 \text{ } \mu\text{s} \\
P_{rec}(100\%) & = 28.05 \text{ kW} \\
E_{rec}(100\%) & = 0.12 \text{ mJ} \\
t_{Erec} & = 0.08 \text{ } \mu\text{s}
\end{align*}
Switching Definitions BOOST IGBT

General conditions

\[T_j = 125 \, ^\circ C \]
\[R_{on} = 8 \, \Omega \]
\[R_{off} = 8 \, \Omega \]

Figure 1
Neutral point IGBT
Turn-off Switching Waveforms & definition of \(t_{off}, t_{Eoff} \)

- \(V_{GE}(0\%) = -15 \, V \)
- \(V_{GE}(100\%) = 15 \, V \)
- \(I_C(100\%) = 40 \, A \)
- \(t_{off} = 0.21 \, \mu s \)
- \(t_{Eoff} = 0.40 \, \mu s \)

Figure 2
Neutral point IGBT
Turn-on Switching Waveforms & definition of \(t_{on}, t_{Eon} \)

- \(V_{GE}(0\%) = -15 \, V \)
- \(V_{GE}(100\%) = 15 \, V \)
- \(I_C(100\%) = 40 \, A \)
- \(t_{on} = 0.10 \, \mu s \)
- \(t_{Eon} = 0.20 \, \mu s \)

Figure 3
Neutral point IGBT
Turn-off Switching Waveforms & definition of \(t_{f} \)

- \(V_C(100\%) = 350 \, V \)
- \(I_C(100\%) = 40 \, A \)
- \(t_f = 0.099 \, \mu s \)

Figure 4
Neutral point IGBT
Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C(100\%) = 350 \, V \)
- \(I_C(100\%) = 40 \, A \)
- \(t_r = 0.013 \, \mu s \)
Switching Definitions BOOST IGBT

Figure 5
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}}(100\%) = 13.96\ kW$
- $E_{\text{off}}(100\%) = 1.50\ mJ$
- $t_{\text{Eoff}} = 0.40\ \mu s$

Figure 6
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}}(100\%) = 13.9552\ kW$
- $E_{\text{on}}(100\%) = 0.72\ mJ$
- $t_{\text{Eon}} = 0.2025\ \mu s$

Figure 7
Neutral Point IGBT
Gate voltage vs Gate charge (measured)

- $V_{\text{G(on)}} = -15\ V$
- $V_{\text{G(off)}} = 15\ V$
- $V_{\text{C(on)}}(100\%) = 350\ V$
- $V_{\text{C(off)}}(100\%) = 40\ A$
- $Q_g = 464.74\ nC$

Figure 8
Half Bridge FRED
Turn-off Switching Waveforms & definition of t_{tr}

- $V_d(100\%) = 350\ V$
- $i_d(100\%) = 40\ A$
- $i_{\text{rm}}(100\%) = -79\ A$
- $t_{\text{tr}} = 0.17\ \mu s$
Switching Definitions BOOST IGBT

Figure 9
Turn-on Switching Waveforms & definition of \(t_{Q_{rr}} \)
(\(t_{Q_{int}} \) = integrating time for \(Q_{rr} \))

- \(I_d \) (100%) = 40 A
- \(Q_{rr} \) (100%) = 6.14 μC
- \(t_{Q_{int}} \) = 1.00 μs

Figure 10
Turn-on Switching Waveforms & definition of \(t_{E_{rec}} \)
(\(t_{E_{int}} \) = integrating time for \(E_{rec} \))

- \(P_{rec} \) (100%) = 13.96 kW
- \(E_{rec} \) (100%) = 1.78 mJ
- \(t_{E_{int}} \) = 1.00 μs

Measurement circuit

Figure 11
BOOST stage switching measurement circuit

copyright Vincotech
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o thermal paste 12mm housing solder pin</td>
<td>10-FZ06NMA080SH-M269F</td>
<td>M269F</td>
<td>M269F</td>
</tr>
</tbody>
</table>

Outline

Pin hole

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>17.2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10.1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8.8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7.1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10.8</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>7.7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10.5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>16.8</td>
</tr>
<tr>
<td>13</td>
<td>2.8</td>
<td>22.6</td>
</tr>
<tr>
<td>14</td>
<td>10.1</td>
<td>22.6</td>
</tr>
<tr>
<td>15</td>
<td>17.2</td>
<td>22.6</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>22.6</td>
</tr>
<tr>
<td>17</td>
<td>16.8</td>
<td>22.6</td>
</tr>
<tr>
<td>18</td>
<td>15.6</td>
<td>22.6</td>
</tr>
<tr>
<td>19</td>
<td>15.6</td>
<td>14.8</td>
</tr>
<tr>
<td>20</td>
<td>15.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Pinout

GND 05,14

Line 08,09,10,11

-DC 03,04

+DC 15,16

Table of contents

1. Ordering Code and Marking
2. Outline
3. Pinout

Vincotech copyright

25
Revision: 4
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.