Maximum Ratings

$T_\text{a} = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$T_j = T_{\text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_j = T_{\text{max}}$</td>
<td>57</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_j limited by T_{max}</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{\text{max}}$</td>
<td>97</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{Jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Features

- High Efficiency three-level half-bridge
- High efficiency IGBT
- Neutral point-Clamped inverter
- Clip-In PCB mounting
- Low Inductance Layout

Target applications

- Solar inverters
- UPS
- Power supplies

Types

- 10-FZ07NA075SM-P926F58
Maximum Ratings

\(T = 25 \, ^\circ\text{C}, \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode\Out. Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RRM}})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_s)</td>
<td>(T_i = T_{\text{max}}) (T_s = 80^\circ\text{C})</td>
<td>59</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{\text{FRM}})</td>
<td></td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{\text{max}}) (T_s = 80^\circ\text{C})</td>
<td>78</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Out. Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RRM}})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_s)</td>
<td>(T_i = T_{\text{max}}) (T_s = 80^\circ\text{C})</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{\text{FRM}})</td>
<td></td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{\text{max}}) (T_s = 80^\circ\text{C})</td>
<td>85</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-40...+ ((T_{\text{max}} - 25))</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{ins}})</td>
<td>DC Voltage</td>
<td>(t_f = 2) s</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min. 12,7</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>9,75</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td></td>
<td>> 200</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{GE} [V] V_{CE} [V] I_{b} [A] I_{r} [A] T_{j}[°C]</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>0,00075</td>
<td>3</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>25</td>
<td>1,67</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CE}</td>
<td>650</td>
<td>40</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GS}</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{oi}</td>
<td></td>
<td>4300</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{os}</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance to sink</td>
<td>$R_{th(j-s)}$ phase-change material $\lambda = 3,4$ W/mK</td>
<td>0,98</td>
<td></td>
</tr>
<tr>
<td>IGBT Switching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td></td>
<td>0,799</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td></td>
<td>0,314</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_C</td>
<td>75</td>
<td>25 125 150</td>
<td>1,53 1,49 1,47</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td>650</td>
<td>25</td>
<td>3,8</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material</td>
<td>$\dot{\gamma} = 3,4 W/mK$</td>
<td>1,23</td>
</tr>
<tr>
<td>FWD Switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td>350</td>
<td>25 125 150</td>
<td>60 79 84</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>≤15</td>
<td>25 125 150</td>
<td>72 121 134</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>350</td>
<td>25 125 150</td>
<td>2,434 4,832 5,418</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>≤15</td>
<td>25 125 150</td>
<td>0,484 1,031 1,126</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(\dot{d}v/dt){max}$</td>
<td>≤15</td>
<td>25 125 150</td>
<td>708 814 959</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>$V_{CE}=V_{CE}$</td>
<td>0,00075</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td>V_{CE}</td>
<td>15 0 75</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GED}</td>
<td>V_{CE}</td>
<td>20 0 25</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_e</td>
<td>V_{CE}</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{ie}</td>
<td>$f = 1$ MHz</td>
<td>0 25</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oe}</td>
<td>$f = 1$ MHz</td>
<td>0 25</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>$f = 1$ MHz</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_r</td>
<td>V_{CE}</td>
<td>15 520 75</td>
<td>25</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$R_{th(j-s)}$</th>
<th>phase-change material $\lambda = 3.4 \text{ W/mK}$</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,98</td>
<td>K/W</td>
</tr>
</tbody>
</table>

IGBT Switching

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E_{on}</th>
<th>$Q_{on} = 4 \mu C$</th>
<th>$R_{on} = 4 \Omega$</th>
<th>$t_{d(on)}$</th>
<th>t_{f}</th>
<th>t_{r}</th>
<th>$R_{g(t)} = 4 \Omega$</th>
<th>Q_{rFWD}</th>
<th>Q_{rFWD}</th>
<th>Q_{rFWD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>E_{on}</td>
<td>$Q_{on} = 2.6 \mu C$</td>
<td>$Q_{on} = 4.7 \mu C$</td>
<td>$Q_{on} = 5.3 \mu C$</td>
<td>$t_{d(on)}$</td>
<td>t_{f}</td>
<td>t_{r}</td>
<td>$R_{g(t)} = 4 \Omega$</td>
<td>Q_{rFWD}</td>
<td>Q_{rFWD}</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>E_{off}</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$t_{d(off)}$</td>
<td>t_{f}</td>
<td>t_{r}</td>
<td>$R_{g(off)} = 4 \Omega$</td>
<td>Q_{rFWD}</td>
<td>Q_{rFWD}</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$t_{d(off)}$</td>
<td>t_{f}</td>
<td>t_{r}</td>
<td>$R_{g(off)} = 4 \Omega$</td>
<td>Q_{rFWD}</td>
<td>Q_{rFWD}</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 2.6 \mu C$</td>
<td>$Q_{on} = 4.7 \mu C$</td>
<td>$Q_{on} = 5.3 \mu C$</td>
<td>$t_{d(on)}$</td>
<td>t_{f}</td>
<td>t_{r}</td>
<td>$R_{g(t)} = 4 \Omega$</td>
<td>Q_{rFWD}</td>
<td>Q_{rFWD}</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$Q_{off} = 4 \mu C$</td>
<td>$t_{d(off)}$</td>
<td>t_{f}</td>
<td>t_{r}</td>
<td>$R_{g(off)} = 4 \Omega$</td>
<td>Q_{rFWD}</td>
<td>Q_{rFWD}</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GE</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GS</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>C</sub> [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>T</sub> [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>[°C]</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out. Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V<sub>F</sub></td>
<td>75</td>
<td>25</td>
<td>1,53</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I<sub>r</sub></td>
<td>650</td>
<td>25</td>
<td>3,8</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R<sub>th(j-s)</sub></td>
<td>phase-change material</td>
<td>1,23</td>
<td>K/W</td>
</tr>
<tr>
<td>FWD Switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I<sub>RRM</sub></td>
<td>75</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t<sub>rr</sub></td>
<td>75</td>
<td>25</td>
<td>74</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q<sub>r</sub></td>
<td>350</td>
<td>25</td>
<td>0,607</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E<sub>rec</sub></td>
<td>25</td>
<td>25</td>
<td>948</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(di<sub>rf</sub>/dt)</td>
<td>25</td>
<td>25</td>
<td>498</td>
</tr>
<tr>
<td>Out. Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V<sub>F</sub></td>
<td>75</td>
<td>25</td>
<td>1,46</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I<sub>r</sub></td>
<td>650</td>
<td>25</td>
<td>0,9</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R<sub>th(j-s)</sub></td>
<td>phase-change material</td>
<td>1,12</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$V_{GE} \ [V]$</td>
<td>$V_{GS} \ [V]$</td>
<td>$I_{C} \ [A]$</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Deviation of R100</td>
<td>$\Delta R/R_{100}$</td>
<td>R100=1484 Ω</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>1,5</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±1%</td>
<td>25</td>
<td>3962</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/50)}$</td>
<td>Tol. ±1%</td>
<td>25</td>
<td>4000</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech
Buck Switch\Out. Boost Switch Characteristics

Typical output characteristics IGBT

\[I_C = f(V_{CE}) \]

![Graph](image)

\[t_p = 250 \mu s \]
\[V_{CE} = 15 \text{ V} \]
\[T_j: 25^\circ\text{C} \]
\[125^\circ\text{C} \]

Typical output characteristics IGBT

\[I_C = f(V_{CE}) \]

![Graph](image)

\[t_p = 250 \mu s \]
\[V_{CE} = 10 \text{ V} \]
\[T_j: 125^\circ\text{C} \]
\[150^\circ\text{C} \]

Typical transfer characteristics IGBT

\[I_C = f(V_{GE}) \]

![Graph](image)

\[t_p = 100 \mu s \]
\[V_{CE} = 10 \text{ V} \]
\[T_j: 25^\circ\text{C} \]
\[125^\circ\text{C} \]

Transient Thermal Impedance as function of Pulse duration IGBT

\[Z_{th(j-s)} = f(t_p) \]

![Graph](image)

\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 0.98 \text{ K/W} \]

IGBT thermal model values

\[R \text{ (K/W)} \]
\[t \text{ (s)} \]

- 7.21E-02 2.25E+00
- 1.46E-01 3.32E-01
- 4.74E-01 6.42E-02
- 1.76E-01 1.63E-02
- 6.17E-02 3.99E-03
- 4.63E-02 3.57E-04

Copyright Vincotech
Buck Switch\Out. Boost Switch Characteristics

Gate voltage vs Gate charge

\[V_{GE} = f(Q_G) \]

At \(I_C = 75 \, \text{A} \) and
\(D = \), single pulse
\(T_J = 80 \, ^\circ\text{C} \)
\(V_{GE} = \pm 15 \, \text{V} \)
\(T_J = T_{J\text{max}} \, ^\circ\text{C} \)

Safe operating area

\[I_C = f(V_{CE}) \]
Buck Diode\Out. Boost Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(V_F) (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_F) (A)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

\(t_p = 250 \mu s \)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>25</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-s)}) (K/W)</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transient thermal impedance as a function of pulse width

\[Z_{th} = f(t_p) \]

\[D = \frac{t_p}{T} \]

<table>
<thead>
<tr>
<th>(D)</th>
<th>0.000</th>
<th>0.005</th>
<th>0.01</th>
<th>0.02</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-s)}) (K/W)</td>
<td>8,04E-02</td>
<td>1,74E-01</td>
<td>6,28E-01</td>
<td>2,05E-01</td>
<td>8,90E-02</td>
<td>4,76E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau) (s)</td>
<td>2,68E+00</td>
<td>2,85E-01</td>
<td>6,23E-02</td>
<td>1,65E-02</td>
<td>4,15E-03</td>
<td>4,96E-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FWD thermal model values

- \(R \) (K/W)
 - 8.04E-02
 - 1.74E-01
 - 6.28E-01
 - 2.05E-01
 - 8.90E-02
 - 4.76E-02

- \(\tau \) (s)
 - 2.68E+00
 - 2.85E-01
 - 6.23E-02
 - 1.65E-02
 - 4.15E-03
 - 4.96E-04
Out. Boost Inverse Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

- \(I_F \) vs \(V_F \)
- \(V_F \) range: 0 to 5 V
- Graphs for different temperatures:
 - \(25 \) °C
 - \(125 \) °C
 - \(150 \) °C

Transient thermal impedance as a function of pulse width

\[Z_{th}(j\omega) = f(t_p) \]

- \(Z_{th}(j\omega) \) vs \(t_p \)
- \(t_p = 250 \) µs
- Graphs for different pulse widths:
 - \(D = 0.5 \)
 - \(D = 0.2 \)
 - \(D = 0.1 \)
 - \(D = 0.05 \)
 - \(D = 0.02 \)
 - \(D = 0.01 \)
 - \(D = 0.005 \)
 - \(D = 0.001 \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R (K/W))</th>
<th>(\tau (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.884E-02</td>
<td>4.0940E+00</td>
</tr>
<tr>
<td>1.6010E-01</td>
<td>8.4260E-01</td>
</tr>
<tr>
<td>3.6790E-01</td>
<td>1.3000E-01</td>
</tr>
<tr>
<td>3.1440E-01</td>
<td>4.0505E-02</td>
</tr>
<tr>
<td>1.5660E-01</td>
<td>8.7690E-03</td>
</tr>
<tr>
<td>4.7270E-02</td>
<td>1.1130E-03</td>
</tr>
</tbody>
</table>

Thermistor Characteristics

Typical NTC characteristic

\[R_T = f(T) \]

- \(R_T \) vs \(T \)
- \(R_T \) range: 1000 to 25000 Ω
- \(T \) range: 25 to 125 °C

NTC-typical temperature characteristic

- Graph showing the relationship between \(R_T \) and \(T \)
Buck Switching Characteristics

Figure 1. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(V_{in} = 350 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{on} = 4 \text{ Ω} \)
- \(R_{off} = 4 \text{ Ω} \)

Figure 2. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(r_g) \]

With an inductive load at
- \(V_{in} = 350 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(I_C = 75 \text{ A} \)

Figure 3. FWD

Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(V_{in} = 350 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{on} = 4 \text{ Ω} \)
- \(R_{off} = 4 \text{ Ω} \)

Figure 4. FWD

Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(r_g) \]

With an inductive load at
- \(V_{in} = 350 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(I_C = 75 \text{ A} \)
Buck Switching Characteristics

Figure 5. IGBT

Typical switching times as a function of collector current

\[t = f(I_{C}) \]

With an inductive load at

- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_{C} = 75 \, \text{A} \)

Figure 6. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_{g}) \]

With an inductive load at

- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{goff} = 4 \, \Omega \)

Figure 7. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_{C}) \]

With a capacitive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 8. FWD

Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(R_{gon}) \]

With a capacitive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_{C} = 75 \, \text{A} \)
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At \(V_{CE} = 350 \, V \) and \(T_J = 25 \, ^\circ C \)

VGE = ±15 V

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

At \(V_{CE} = 350 \, V \) and \(T_J = 25 \, ^\circ C \)

VGE = ±15 V

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At \(V_{CE} = 350 \, V \) and \(T_J = 25 \, ^\circ C \)

VGE = ±15 V

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At \(V_{CE} = 350 \, V \) and \(T_J = 25 \, ^\circ C \)

VGE = ±15 V

Copyright Vincotech
Buck Switching Characteristics

Figure 13. FWD Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{d_i}{dt}, \frac{d_i}{dt} = f(Ic)$

At $V_{CE} = 350 \text{ V}$ 25 °C
$V_{GE} = \pm 15 \text{ V}$
$R_{gon} = 4 \text{ Ω}$
$T_J: 125 \text{ °C}$
$I_C: 75 \text{ A}$

Figure 14. FWD Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $\frac{d_i}{dt}, \frac{d_i}{dt} = f(R_g)$

At $V_{CE} = 350 \text{ V}$ 25 °C
$V_{GE} = \pm 15 \text{ V}$
$T_J: 125 \text{ °C}$
$I_C: 75 \text{ A}$

Figure 15. IGBT Reverse bias safe operating area

At $V_{CE} = 350 \text{ V}$ 25 °C
$V_{GE} = \pm 15 \text{ V}$
$T_J: 125 \text{ °C}$
$I_C: 75 \text{ A}$

Copyright Vincotech
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tj</td>
<td>125 °C</td>
</tr>
<tr>
<td>Rg</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT Figure 2. IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{E_{\text{off}}} \) (\(t_{E_{\text{off}}} \) = integrating time for \(E_{\text{off}} \))

Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{E_{\text{on}}} \) (\(t_{E_{\text{on}}} \) = integrating time for \(E_{\text{on}} \))

Figure 3. IGBT Figure 4. IGBT

Turn-off Switching Waveforms & definition of Tr

Turn-on Switching Waveforms & definition of Tt

Vc(0%) = 0 V
Vc(100%) = 20 V
Vc(100%) = 350 V
Ic(100%) = 74 A
\(t_{\text{doff}} \) = 0.115 µs
\(t_{E_{\text{off}}} \) = 0.160 µs

Vc(0%) = 0 V
Vc(100%) = 20 V
Vc(100%) = 350 V
Ic(100%) = 74 A
\(t_{\text{don}} \) = 0.039 µs
\(t_{E_{\text{on}}} \) = 0.143 µs

Vc(100%) = 350 V
Ic(100%) = 74 A
\(t_r \) = 0.008 µs

Copyright Vincotech
Buck Switching Definitions

Figure 5. IGBT Turn-off Switching Waveforms & definition of t\textsubscript{Eoff}

- \(P_{\text{off}}(100\%) = 26.01 \text{ kW} \)
- \(E_{\text{off}}(100\%) = 0.53 \text{ mJ} \)
- \(t_{\text{Eoff}} = 0.16 \mu\text{s} \)

Figure 6. IGBT Turn-on Switching Waveforms & definition of toff

- \(P_{\text{on}}(100\%) = 26.01 \text{ kW} \)
- \(E_{\text{on}}(100\%) = 1.17 \text{ mJ} \)
- \(t_{\text{Eon}} = 0.14 \mu\text{s} \)

Figure 7. FWD Turn-off Switching Waveforms & definition of trr

- \(V_{\text{d}}(100\%) = 350 \text{ V} \)
- \(I_{\text{d}}(100\%) = 74 \text{ A} \)
- \(I_{\text{on}}(100\%) = -79 \text{ A} \)
- \(t_{\text{rr}} = 0.121 \mu\text{s} \)
Buck Switching Definitions

Figure 8: Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$ integrating time for Q_{rr}

- $I_{d}(100\%) = 74$ A
- $Q_{rr}(100\%) = 4.83$ µC
- $t_{Q_{rr}} = 0.24$ µs

Figure 9: Turn-on Switching Waveforms & definition of $t_{E_{rec}}$ integrating time for E_{rec}

- $P_{rec}(100\%) = 26.01$ kW
- $E_{rec}(100\%) = 1.03$ mJ
- $t_{E_{rec}} = 0.24$ µs
Out. Boost Switching Characteristics

Figure 1. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 2. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(r_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(I_C = 75 \) A

Figure 3. FWD

Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(R_{pm} = 4 \) Ω

Figure 4. FWD

Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(r_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(I_C = 75 \) A
Out. Boost Switching Characteristics

Figure 5. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at:
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 75 \, \text{A} \)

Figure 6. IGBT

Typical switching times as a function of gate resistor

\[t = f(r_g) \]

With an inductive load at:
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 75 \, \text{A} \)

Figure 7. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At:
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{goff} = 4 \, \Omega \)
- \(T_j = 125 \, ^\circ\text{C} \)
- \(I_C = 75 \, \text{A} \)

Figure 8. FWD

Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(R_{gon}) \]

At:
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 75 \, \text{A} \)
- \(T_j = 150 \, ^\circ\text{C} \)
Out. Boost Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[
Q_r = f(I_C)
\]

At
\[
\begin{align*}
V_{IC} &= 350 \text{ V} \quad & T_j &= 25 ^\circ \text{C} \\
V_{GE} &= \pm 15 \text{ V} \\
R_{\text{gon}} &= 4 \, \Omega \\
I_C &= 75 \text{ A}
\end{align*}
\]

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[
Q_r = f(R_{\text{gon}})
\]

At
\[
\begin{align*}
V_{IC} &= 350 \text{ V} \quad & T_j &= 25 ^\circ \text{C} \\
V_{GE} &= \pm 15 \text{ V} \\
R_{\text{gon}} &= 4 \, \Omega \\
I_C &= 75 \text{ A}
\end{align*}
\]

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[
I_{RM} = f(I_C)
\]

At
\[
\begin{align*}
V_{IC} &= 350 \text{ V} \quad & T_j &= 25 ^\circ \text{C} \\
V_{GE} &= \pm 15 \text{ V} \\
R_{\text{gon}} &= 4 \, \Omega \\
I_C &= 75 \text{ A}
\end{align*}
\]

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[
I_{RM} = f(R_{\text{gon}})
\]

At
\[
\begin{align*}
V_{IC} &= 350 \text{ V} \quad & T_j &= 25 ^\circ \text{C} \\
V_{GE} &= \pm 15 \text{ V} \\
R_{\text{gon}} &= 4 \, \Omega \\
I_C &= 75 \text{ A}
\end{align*}
\]
Out. Boost Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{d_i}{dt}, \frac{d_{ir}}{dt} = f(I_{cc}) \]

At
- \(V_{ce} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(T_j = 25 \) °C
- \(R_{gon} = 4 \) Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{d_i}{dt}, \frac{d_{ir}}{dt} = f(R_{g}) \]

At
- \(V_{ce} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(T_j = 125 \) °C
- \(I_{ce} = 75 \) A
- \(T_j = 150 \) °C

Figure 15. IGBT
Reverse bias safe operating area

\[I_{ce} = f(V_{ce}) \]

At
- \(T_j = 175 \) °C
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Copyright Vincotech
22
24 Feb. 2016 / Revision 1
Out. Boost Switching Definitions

General conditions

- $T_j = 25 ^\circ C$
- $R_{DS(on)} = 4 \, \Omega$

Figure 1. IGBT
Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

Figure 2. IGBT
Turn-on Switching Waveforms & definition of t_{on}, t_{Eon} (t_{Eon} = integrating time for E_{on})

Figure 3. IGBT
Turn-off Switching Waveforms & definition of t_{f}

Figure 4. IGBT
Turn-on Switching Waveforms & definition of t_{r}

General conditions

- $V_{CE(0\%)} = 0 \, V$
- $V_{CE(100\%)} = 20 \, V$
- $V_{C(100\%)} = 350 \, V$
- $I_{C(10\%)} = 75 \, A$
- $I_{C(1\%)} = 0.120 \, \mu s$
- $t_{fitted} = 0.159 \, \mu s$

- $V_{CE(0\%)} = 0 \, V$
- $V_{CE(100\%)} = 20 \, V$
- $V_{C(100\%)} = 350 \, V$
- $I_{C(10\%)} = 75 \, A$
- $t_{fitted} = 0.040 \, \mu s$
- $t_{fitted} = 0.131 \, \mu s$

- $V_{C(10\%)} = 350 \, V$
- $I_{C(10\%)} = 75 \, A$
- $t_{fitted} = 0.009 \, \mu s$
- $t_{fitted} = 0.015 \, \mu s$
Out. Boost Switching Definitions

Figure 5. IGBT
- **Turn-off Switching Waveforms & definition of tEoff**
 - $P_{off}(100\%) = 26.12$ kW
 - $E_{off}(100\%) = 0.60$ mJ
 - $t_{Eoff} = 0.16 \mu s$

Figure 6. IGBT
- **Turn-on Switching Waveforms & definition of tEon**
 - $P_{on}(100\%) = 26.12$ kW
 - $E_{on}(100\%) = 0.99$ mJ
 - $t_{Eon} = 0.13 \mu s$

Figure 7. FWD
- **Turn-off Switching Waveforms & definition of t_rr**
 - $V_{d}(100\%) = 350$ V
 - $I_{d}(100\%) = 75$ A
 - $I_{RRM}(10\%) = -73$ A
 - $t_{rr} = 0.114 \mu s$
Out. Boost Switching Definitions

Figure 8. FWD
Turn-on switching waveforms & definition of \(t_{Qrr} \). Integrating time for \(Q_{rr} \).

\[I_d(100\%) = 75 \text{ A} \]
\[Q_{rr}(100\%) = 4.74 \text{ } \mu \text{C} \]
\[t_{Qrr} = 0.23 \text{ } \mu \text{s} \]

Figure 9. FWD
Turn-on switching waveforms & definition of \(t_{Erec} \). Integrating time for \(E_{rec} \).

\[P_{rec}(100\%) = 26.12 \text{ kW} \]
\[E_{rec}(100\%) = 1.22 \text{ mJ} \]
\[t_{Erec} = 0.23 \text{ } \mu \text{s} \]
10-FZ07NA075SM-P926F58 datasheet

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & Vinco</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasheet</td>
<td>10-FZ07NA075SM-P926F58</td>
<td>WWYY WWYY</td>
<td>UL Vinco</td>
<td>LLLLL</td>
<td>SSSS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin table</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>X</td>
<td>Y</td>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33,6</td>
<td>0</td>
<td>G2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30,8</td>
<td>0</td>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0</td>
<td>-DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19,2</td>
<td>0</td>
<td>-DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10,1</td>
<td>0</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,8</td>
<td>0</td>
<td>S4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>G4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>7,1</td>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9,9</td>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12,7</td>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15,5</td>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>22,6</td>
<td>G3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2,8</td>
<td>22,6</td>
<td>S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10,1</td>
<td>22,6</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19,2</td>
<td>22,6</td>
<td>+DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>22,6</td>
<td>+DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>30,8</td>
<td>22,6</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>33,6</td>
<td>22,6</td>
<td>G1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>33,6</td>
<td>14,8</td>
<td>NTC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>33,6</td>
<td>8,2</td>
<td>NTC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Not assembled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Not assembled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

Dimensions of coordinate axes is only offset without tolerance.
Pinout

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2</td>
<td>IGBT</td>
<td>650 V</td>
<td>75 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D5, D6</td>
<td>FWD</td>
<td>650 V</td>
<td>75 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T3, T4</td>
<td>IGBT</td>
<td>650 V</td>
<td>75 A</td>
<td>Out. Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D1, D2</td>
<td>FWD</td>
<td>650 V</td>
<td>75 A</td>
<td>Out. Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D3, D4</td>
<td>FWD</td>
<td>650 V</td>
<td>75 A</td>
<td>Out. Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech 2016 / Revision 1
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.