Maximum Ratings

\(T = 25 \, ^\circ C, \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CES})</td>
<td>(T = T_{j max}), (T_s = 80 , ^\circ C)</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_C)</td>
<td>(T = T_{j max}), (T_s = 80 , ^\circ C)</td>
<td>62</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CRM})</td>
<td>(T = T_{j max}), (T_s = 80 , ^\circ C)</td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T = T_{j max}), (T_s = 80 , ^\circ C)</td>
<td>100</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GES})</td>
<td>(T_s = 80 , ^\circ C)</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j max})</td>
<td>(T_s = 80 , ^\circ C)</td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \degree \text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>106</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>87</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>0.1.ms, sin 180°</td>
<td>890</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>P_{2t}</td>
<td></td>
<td>3960</td>
<td>A²s</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>95</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>DC Link Capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td></td>
<td>-55...+125</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_1 = 25 \, ^\circ\text{C}, \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40...+125</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{jop})</td>
<td></td>
<td>-40..((T_{jmax} - 25))</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{ins})</td>
<td>DC Test Voltage (t_x = 2 , \text{s})</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>9,75</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGE</td>
<td>V_GE</td>
<td></td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>VGS</td>
<td>V_GS</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>VCE</td>
<td>V_CE</td>
<td></td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>I_D</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>I_C</td>
<td>Min Typ Max</td>
<td>4,8</td>
<td>V</td>
</tr>
<tr>
<td>Tj</td>
<td>Tj</td>
<td></td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

Boost Switch

Static

- **Gate-emitter threshold voltage** \(V_{GEmi} = V_{CE}\)
 - Value: 0,001
 - Conditions: Min: 25, Typ: 3,2, Max: 4
 - Unit: V

- **Collector-emitter saturation voltage** \(V_{CEsat}\)
 - Conditions: Min: 15, Typ: 25, Max: 100
 - Value: 1,77
 - Conditions: Min: 125, Typ: 1,86, Max: 1,91
 - Unit: V

- **Collector-emitter cut-off current** \(I_{CES}\)
 - Conditions: Min: 0, Typ: 650, Max: 25
 - Value: 100
 - Unit: µA

- **Gate-emitter leakage current** \(I_{GES}\)
 - Conditions: Min: 20, Typ: 0, Max: 25
 - Value: 100
 - Unit: nA

- **Internal gate resistance** \(R_g\)
 - Value: none
 - Unit: Ω

- **Input capacitance** \(C_{i}\)
 - Conditions: Min: 0, Typ: 25, Max: 25
 - Value: 6560
 - Unit: pF

- **Output capacitance** \(C_{o}\)
 - Conditions: Min: 97
 - Unit: pF

- **Reverse transfer capacitance** \(C_{res}\)
 - Value: 21
 - Unit: nC

Thermal

- **Thermal resistance junction to sink** \(R_{th(j-s)}\)
 - Conditions: Min: 0,95
 - Unit: K/W

Dynamic

- **Turn-on delay time** \(t_{d(on)}\)
 - Conditions: Min: 0, Typ: 125, Max: 150
 - Value: 49
 - Unit: ns

- **Rise time** \(t_r\)
 - Value: 10
 - Conditions: Min: 125, Typ: 15, Max: 15
 - Unit: ns

- **Turn-off delay time** \(t_{d(off)}\)
 - Conditions: Min: 25
 - Conditions: Min: 125, Typ: 115, Max: 130
 - Conditions: Min: 150, Typ: 133
 - Unit: ns

- **Fall time** \(t_f\)
 - Conditions: Min: 25
 - Conditions: Min: 125, Typ: 13, Max: 15
 - Unit: ns

- **Turn-on energy (per pulse)** \(E_{on}\)
 - Conditions: Min: 25
 - Conditions: Min: 125, Typ: 1,631, Max: 1,995
 - Unit: mWs

- **Turn-off energy (per pulse)** \(E_{off}\)
 - Conditions: Min: 25
 - Conditions: Min: 125, Typ: 0,618, Max: 1,182
 - Unit: mWs
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_t</td>
<td>100</td>
<td>1,50</td>
<td>1,77</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>i_r</td>
<td>550</td>
<td>5,3</td>
<td>μA</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td>0,90</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{on}</td>
<td>57</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>105</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>$Q_{rdi/dt}$</td>
<td>3,659</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>0,797</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td>5326</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Boost Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_t</td>
<td>1,67</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>i_r</td>
<td>5,3</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>2,87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Link Capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
<tr>
<td>Dissipation factor</td>
<td></td>
<td>f = 1 kHz</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Climatic category</td>
<td></td>
<td></td>
<td></td>
<td>55/125/56</td>
</tr>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_i</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td></td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{th(j-s)}</td>
<td>phase-change material λ = 3,4 W/mK</td>
<td></td>
<td>0,74</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Deviation of R_{tot}</td>
<td></td>
<td>ΔR</td>
<td>R_{tot} = 1484 Ω</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>B-value</td>
<td></td>
<td>R_{B(25/100)}</td>
<td>Tol. ±1 %</td>
<td></td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

figure 1.
Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 15 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(125 \, ^\circ C \)
- \(150 \, ^\circ C \)

figure 2.
Typical output characteristics

\[I_C = f(V_{GE}) \]

- \(V_{GE} = 7 \, V \) to \(17 \, V \) in steps of \(1 \, V \)

figure 3.
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 100 \, \mu s \)
- \(V_{CE} = 10 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(125 \, ^\circ C \)
- \(150 \, ^\circ C \)

figure 4.
Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(D = \frac{t_p}{T} \)
- \(R_{th(j-s)} = 0.95 \, K/W \)

IGBT thermal model values

- \(R \) (K/W)
- \(t \) (s)
- \(1.57E-01 \)
- \(1.21E+00 \)
- \(3.43E-01 \)
- \(1.58E-01 \)
- \(3.28E-01 \)
- \(4.39E-02 \)
- \(9.05E-02 \)
- \(7.74E-03 \)
- \(3.40E-02 \)
- \(6.69E-04 \)
Boost Switch Characteristics

Figure 5. Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

Figure 6. Safe operating area

\[I_C = f(V_{CE}) \]

- \(D = \) single pulse
- \(T_i = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{jmax} \) °C

\[I_C = 100 \text{ A} \]

\[V_{GE} = \pm 15 \text{ V} \]

\[T_j = T_{jmax} \]
Boost Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>Diode thermal model values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R) (K/W)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7,42E-02</td>
</tr>
<tr>
<td>1,41E-01</td>
</tr>
<tr>
<td>3,41E-01</td>
</tr>
<tr>
<td>1,94E-01</td>
</tr>
<tr>
<td>9,09E-02</td>
</tr>
<tr>
<td>5,85E-02</td>
</tr>
</tbody>
</table>

\[D = \frac{t_p}{\tau} \]

\[Z_{th(j-s)} = 0.90 \text{ K/W} \]
Boost Sw. Protection Diode Characteristics

figure 1. FWD
Typical forward characteristics

$I_F = f(V_F)$

figure 2. FWD
Transient thermal impedance as a function of pulse width

$Z_{th}(t) = f(t_D)$

$t_D = \frac{t_p}{T}$

$R_{th(j-s)} = 2.87 \text{ K/W}$

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5090E-02</td>
<td>3.9390E+00</td>
</tr>
<tr>
<td>1.4760E-01</td>
<td>4.4830E-01</td>
</tr>
<tr>
<td>1.3130E+00</td>
<td>5.9640E-02</td>
</tr>
<tr>
<td>7.3180E-01</td>
<td>1.3610E-02</td>
</tr>
<tr>
<td>4.0440E-01</td>
<td>2.7940E-03</td>
</tr>
<tr>
<td>2.1060E-01</td>
<td>5.3720E-04</td>
</tr>
</tbody>
</table>

$t_p = 250 \mu s$

T_{j}: 125 °C

$D = 0.5$

0.2

0.1

0.05

0.02

0.01

0.005

0.000
Rectifier Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

![Graph showing typical forward characteristics of a rectifier diode.](image)

\[t_p = 250 \, \mu s \quad T_J: \begin{align*} 25 \, ^\circ C \\ 125 \, ^\circ C \end{align*} \]

\[Z_{th(j-s)} = f(t_p) \]

\[R_{th(j-s)} = 0.74 \, \text{K/W} \]

Diode thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.95E-02</td>
<td>7.08E-00</td>
</tr>
<tr>
<td>1.21E-01</td>
<td>1.15E-00</td>
</tr>
<tr>
<td>2.75E-01</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>2.24E-01</td>
<td>5.48E-02</td>
</tr>
<tr>
<td>3.60E-02</td>
<td>4.07E-03</td>
</tr>
<tr>
<td>1.01E-02</td>
<td>1.33E-03</td>
</tr>
</tbody>
</table>

Thermistor Characteristics

Thermistor typical temperature characteristic

Typical NTC characteristic as a function of temperature

\[R_s = f(T) \]

![Graph showing thermistor temperature characteristic.](image)
Boost Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = -5/15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 99 \) A

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = -5/15 \) V
- \(I_C = 99 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = -5/15 \) V
- \(I_C = 99 \) A

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = -5/15 \) V
- \(I_C = 99 \) A
Boost Switching Characteristics

Figure 5. Typical switching times as a function of collector current

$t = f(I_C)$

With an inductive load at

- $T_j = 150 \degree C$
- $V_{CE} = 350 V$
- $V_{GE} = -5/15 V$
- $R_{gon} = 4 \Omega$
- $R_{goff} = 4 \Omega$

Figure 7. Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

At

- $V_{CE} = 350 V$
- $V_{GE} = -5/15 V$
- $R_{g} = 4 \Omega$
- $T_j = 25 \degree C$
- $T_j = 25 \degree C$
- $T_j = 125 \degree C$
- $T_j = 150 \degree C$

Figure 6. Typical switching times as a function of gate resistor

$t = f(R_g)$

With an inductive load at

- $T_j = 150 \degree C$
- $V_{CE} = 350 V$
- $V_{GE} = -5/15 V$
- $I_C = 99 A$

Figure 8. Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{g on})$
Boost Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

![Graph showing typical recovered charge as a function of collector current.](image)

- $Q_r = f(I_C)$
- $Q_r = f(R_{gon})$

At $V_{CE} = 350$ V, 25°C
- $V_{GS} = -5/15$ V
- $R_{on} = 4 \, \Omega$

At $V_{CE} = 350$ V, 25°C
- $V_{GS} = -5/15$ V
- $I_c = 99$ A

Figure 10. Typical recovered charge as a function of IGBT turn-on gate resistor

![Graph showing typical recovered charge as a function of IGBT turn-on gate resistor.](image)

Figure 11. Typical peak reverse recovery current as a function of collector current

![Graph showing typical peak reverse recovery current as a function of collector current.](image)

- $I_{RM} = f(I_C)$

At $V_{CE} = 350$ V, 25°C
- $V_{GS} = -5/15$ V
- $R_{on} = 4 \, \Omega$

At $V_{CE} = 350$ V, 25°C
- $V_{GS} = -5/15$ V
- $I_c = 99$ A

Figure 12a. Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

![Graph showing typical peak reverse recovery current as a function of IGBT turn-on gate resistor.](image)
Boost Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_c)
\]

At
- \(V_{CE} = 350 \) V
- \(V_{GE} = -5/15 \) V
- \(R_{gs} = 4 \) Ω
- \(T_j = 125 \) °C

At
- \(V_{CE} = 350 \) V
- \(V_{GE} = -5/15 \) V
- \(R_{gs} = 4 \) Ω
- \(T_j = 150 \) °C

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_g)
\]

At
- \(V_{CE} = 350 \) V
- \(V_{GE} = -5/15 \) V
- \(R_{gs} = 4 \) Ω
- \(T_j = 125 \) °C

At
- \(V_{CE} = 350 \) V
- \(V_{GE} = -5/15 \) V
- \(R_{gs} = 4 \) Ω
- \(T_j = 150 \) °C

Figure 15. IGBT
Reverse bias safe operating area
\(I_c = f(V_{CE}) \)

At
- \(T_j = 175 \) °C
- \(R_{gs} = 4 \) Ω
- \(R_{goff} = 4 \) Ω
Boost Switching Characteristics

\[T_j = 125 \, ^\circ C \]
\[R_{gcon} = 4 \, \Omega \]
\[R_{goff} = 4 \, \Omega \]

Figure 1.
Turn-off Switching Waveforms & definition of \(t_{doff} \), \(t_{Eoff} \) (\(t_{Eoff} \): integrating time for \(E_{off} \))

Figure 2.
Turn-on Switching Waveforms & definition of \(t_{don} \), \(t_{Eon} \) (\(t_{Eon} \): integrating time for \(E_{on} \))

Figure 3.
Turn-off Switching Waveforms & definition of \(t_f \)

Figure 4.
Turn-on Switching Waveforms & definition of \(t_r \)

V\(_{GE}(0\%)\) = -5 V
V\(_{GE}(100\%)\) = 15 V
V\(_{CE}(100\%)\) = 350 V
I\(_C(100\%)\) = 101 A
\(t_{doff} \) = 0.130 \(\mu \)s
\(t_{Eoff} \) = 0.181 \(\mu \)s

V\(_{GS}(0\%)\) = -5 V
V\(_{GS}(100\%)\) = 15 V
V\(_{CE}(100\%)\) = 350 V
I\(_C(100\%)\) = 101 A
\(t_{on} \) = 0.049 \(\mu \)s
\(t_{Eon} \) = 0.190 \(\mu \)s

V\(_{GE}(10\%)\) = -25 V
V\(_{GE}(90\%)\) = 0 V
V\(_{GE}(90\%)\) = 15 V
I\(_C(10\%)\) = 101 A
I\(_C(90\%)\) = 101 A
I\(_C(60\%)\) = 101 A
I\(_C(40\%)\) = 101 A
I\(_C(10\%)\) = 101 A

-50 0 50 100 150 200
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-50 0 50 100 150 200
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-50 0 50 100 150 200
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-50 0 50 100 150 200
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-50 0 50 100 150 200
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Boost Switching Characteristics

Figure 5. IGBT

Turn-off Switching Waveforms & definition of $t_{E_{off}}$

- $P_{off}(100\%) = 35.26 \text{ kW}$
- $E_{off}(100\%) = 1.08 \text{ mJ}$
- $t_{E_{off}} = 0.18 \mu s$

Figure 6. IGBT

Turn-on Switching Waveforms & definition of $t_{E_{on}}$

- $P_{on}(100\%) = 35.26 \text{ kW}$
- $E_{on}(100\%) = 1.94 \text{ mJ}$
- $t_{E_{on}} = 0.19 \mu s$

Figure 7. FWD

Turn-off Switching Waveforms & definition of t_{rr}

- $V_F(100\%) = 350 \text{ V}$
- $I_F(100\%) = 101 \text{ A}$
- $I_{RRM}(10\%) = -93 \text{ A}$
- $I_{RRM}(90\%) = 3 \text{ A}$
- $I_{RRM}(100\%) = 3,03 \text{ A}$
- $t_{rr} = 0.114 \mu s$
Boost Switching Characteristics

Figure 8. FWD
Turn-on Switching Waveforms & definition of \(t_Q \) \((t_Q = \text{integrating time for } Q_r) \)

\[
\begin{align*}
I_F(100\%) &= 101 \text{ A} \\
Q_r(100\%) &= 6,48 \mu\text{C} \\
I_Q &= 0,23 \mu\text{s}
\end{align*}
\]

Figure 9. FWD
Turn-on Switching Waveforms & definition of \(t_E \) \((t_E = \text{integrating time for } E_{rec}) \)

\[
\begin{align*}
P_{rec}(100\%) &= 35,26 \text{ kW} \\
E_{rec}(100\%) &= 1,52 \text{ mJ} \\
t_{Erec} &= 0,23 \mu\text{s}
\end{align*}
\]
Pinout

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T13, T14</td>
<td>IGBT</td>
<td>650 V</td>
<td>100 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>650 V</td>
<td>100 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D43, D44</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>Boost Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D11, D12</td>
<td>FWD</td>
<td>1600 V</td>
<td>75 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>C10, C20</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>DC Link Capacitance</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>Thermistor</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 0 packages see vincotech.com website.

Package data

Package data for flow 0 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.