10-FZ071SA050SM02-L524L18
datasheet
Vincotech
flow S-PFC 0

HIGH EFF. PFC Application

650 V / 50 A
General conditions
Boost PFC

$$
\begin{aligned}
V_{\text {GEon }} & =+15 \mathrm{~V} \\
V_{\text {GEoff }} & =-5 \mathrm{~V} \\
\boldsymbol{R}_{\text {gon }} & =\mathbf{8} \Omega \\
\boldsymbol{R}_{\text {goff }} & =8 \Omega \\
V_{\text {in }} & =V_{\mathrm{inpk}} * \sin \omega \mathrm{t}
\end{aligned}
$$

figure 1.
Typical average static loss as a function of input current

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
$V_{\text {inpk }} / V_{\text {out }}$ from $\quad 0,1$ to 1 in steps of 0,2
figure 3.
Typical average switching loss

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$f_{\text {sw }}$ from 8 kHz to 64 kHz in steps of factor 2

figure 2.

Typical average static loss as a function of input current
$P_{\text {loss }}=\mathrm{f}\left(I_{\text {in }}\right)$

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
$V_{\text {inpk }} / V_{\text {out }}$ from $\quad 0,1$ to 1 in steps of 0,2

Typical average switching loss

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 64 kHz in steps of factor 2

At

$T_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC-link $=$	350	V
$f_{\text {sw }}=$	50	kHz

T_{s} from $\quad 60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $10^{\circ} \mathrm{C}$
figure 7.
PFC per leg
Typical available input current as a function of of $\mathbf{V}_{\text {inpk }} / \mathbf{V}_{\text {out }}$ and switching frequency $I_{\text {in }}=\mathrm{f}\left(f_{\text {sw, }}, V_{\text {inpk }} / V_{\text {out }}\right)$

Per boost phase

At

$T_{\mathrm{j}}=$	125	${ }^{\circ} \mathrm{C}$
DC-link $=$	350	V
$T_{\mathrm{s}}=$	80	${ }^{\circ} \mathrm{C}$

figure 6.
PFC per leg
Typical available input current
as a function of switching frequency $\quad I_{\text {in }}=\mathrm{f}\left(f_{\text {sw }}\right)$
Per boost phase

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,9$
T_{s} from $\quad 60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $10^{\circ} \mathrm{C}$

figure 8.

PFC per leg
Typical available input current
as a function of switching frequency $\quad I_{\text {in }}=f\left(f_{\text {sw }}\right)$
Per boost phase

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,4$
T_{s} from $\quad 60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Typical available electric input power as a function of heatsink temperature $P_{\text {in }}=\mathrm{f}\left(T_{\mathrm{s}}\right)$

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,9 \quad \mathrm{kHz}$
$f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 64 kHz in steps of factor 2
figure 11.
PFC per leg
Typical available electric input power as a function of heatsink temperature
$P_{\text {in }}=\mathrm{f}\left(T_{\mathrm{s}}\right)$
Per boost phase

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,4$
$f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 64 kHz in steps of factor 2
figure 10.
Typical efficiency as a function of input power efficiency $=\mathrm{f}\left(P_{\text {in }}\right)$

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,9 \quad \mathrm{kHz}$
$f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 64 kHz in steps of factor 2
figure 12.
Typical efficiency as a function of input power efficiency $=f\left(P_{\text {in }}\right)$

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,4$
$f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 64 kHz in steps of factor 2
figure 13.
Typical average static loss as a function of input current
$P_{\text {loss }}=\mathrm{f}\left(I_{\text {in }}\right)$
Per boost phase

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
figure 15.
Overall
Typical efficiency as a function of input power
efficiency $=\mathrm{f}\left(P_{\text {in }}\right)$

At

$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
DC-link $=350 \quad \mathrm{~V}$
$V_{\text {inpk }} / V_{\text {out }}=0,9 \quad \mathrm{kHz}$
$f_{\text {sw }}$ from 8 kHz to 64 kHz in steps of factor 2
figure 14.
Rectifier Bridge
Typical efficiency as a function of input power
efficiency $=\mathrm{f}\left(P_{\text {in }}\right)$

At
$T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
figure 16.
Overall
Typical efficiency as a function of input power efficiency $=\mathrm{f}\left(P_{\text {in }}\right)$

[^0]
[^0]: At
 $T_{\mathrm{j}}=125 \quad{ }^{\circ} \mathrm{C}$
 DC-link $=350 \quad \mathrm{~V}$
 $V_{\text {inpk }} / V_{\text {out }}=0,4 \quad \mathrm{kHz}$
 $f_{\text {sw }}$ from $\quad 8 \mathrm{kHz}$ to 16 kHz in steps of factor 2

