Maximum Ratings

T_j=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V<sub>RRM</sub></td>
<td>DC current</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>I<sub>F</sub></td>
<td>T<sub>j</sub>=80°C</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>c</sub>=80°C</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I<sub>PRM</sub></td>
<td>tp limited by T<sub>j</sub>max</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>t<sup>2</sup>-value</td>
<td>I<sup>t</sup></td>
<td>T<sub>j</sub>=25°C</td>
<td>9,5</td>
<td>A<sup>2</sup>s</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P<sub>Tot</sub></td>
<td>T<sub>j</sub>=T<sub>j</sub>max</td>
<td>26</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=80°C</td>
<td>39</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>j</sub></td>
<td>T<sub>j</sub>max</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V<sub>CES</sub></td>
<td>T<sub>j</sub>=T<sub>j</sub>max</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I<sub>C</sub></td>
<td>T<sub>j</sub>=T<sub>j</sub>max</td>
<td>53</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=80°C</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I<sub>pulse</sub></td>
<td>tp limited by T<sub>j</sub>max</td>
<td>180</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>T<sub>j</sub>≤150°C</td>
<td>180</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CE</sub>≤V<sub>CES</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P<sub>Tot</sub></td>
<td>T<sub>j</sub>=T<sub>j</sub>max</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=80°C</td>
<td>163</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V<sub>GE</sub></td>
<td>T<sub>j</sub>=T<sub>j</sub>max</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>j</sub></td>
<td>T<sub>j</sub>max</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj = 25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{EBR}</td>
<td>Tj=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>Ip</td>
<td>Tj=Tj,max</td>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive Peak Surge Current</td>
<td>Irms</td>
<td>60Hz Single Half-Sine Wave</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>Ptot</td>
<td>Tj=Tj,max</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj,max</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost IGBT				
Collector-emitter break down voltage	V_{CES}	Tj=Tj,max	600	V
DC collector current	Ic	Tj=Tj,max	46	A
Pulsed collector current	Ipuls	Tj,Tj,max limited by Tj,max	225	A
Turn off safe operating area	Vgs	Tj=150°C, Vce<V_{CES}	225	A
Power dissipation per IGBT	Ptot	Tj=Tj,max	103	W
Gate-emitter peak voltage	V_{GE}		±20	V
Short circuit ratings	tSC	Tj=150°C, Vce=15V	6	μs
Maximum Junction Temperature	Tj,max		175	°C

Boost Diode				
Peak Repetitive Reverse Voltage	V_{EBR}	Tj=25°C	1200	V
DC forward current	Ip	Tj=Tj,max	16	A
Repetitive peak forward current	Ipmax	Tj,Tj,max limited by Tj,max, 20kHz Square Wave	36	A
Power dissipation per Diode	Ptot	Tj=Tj,max	48	W
Maximum Junction Temperature	Tj,max		150	°C

Thermal Properties				
Storage temperature	Tstg		-40...+125	°C
Operation temperature under switching condition	Tsp		-40...+(Tj,max - 25)	°C

Insulation Properties				
Insulation voltage	Vins	t=2s DC voltage	4000	V
Creepage distance			min 12,7	mm
Clearance			9,15	mm
Characteristic Values

Buck & Boost Inv. Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>10</td>
<td>1,25</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>(V_{th})</td>
<td></td>
<td>10</td>
<td>1,52</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>(r_{s})</td>
<td></td>
<td>600</td>
<td>0,005</td>
</tr>
<tr>
<td>Reverse current</td>
<td>(I_{r})</td>
<td></td>
<td></td>
<td>0,027</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>Thermal grease thickness≤50u m (\lambda = 1 \text{ W/mK})</td>
<td></td>
<td>3,66</td>
</tr>
</tbody>
</table>

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td>(V_{CE}=V_{GE})</td>
<td>0,00025</td>
<td>3,9</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CBO})</td>
<td></td>
<td></td>
<td>4,5</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>(I_{CES})</td>
<td></td>
<td></td>
<td>5,6</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GES})</td>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{gint})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>(R_{goff}=4 \Omega) (R_{goff}=4 \Omega)</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(R_{goff}=4 \Omega) (R_{goff}=4 \Omega)</td>
<td>115</td>
<td>30</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{on})</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{off})</td>
<td></td>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>(f=1\text{MHz})</td>
<td>2915</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td></td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{r})</td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{G})</td>
<td></td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>Thermal grease thickness≤50u m (\lambda = 1 \text{ W/mK})</td>
<td></td>
<td>0,88</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>30</td>
<td>2,15</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{t})</td>
<td></td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{RRM})</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>(R_{off}=4 \Omega)</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{r})</td>
<td>(R_{off}=4 \Omega)</td>
<td>0,94</td>
<td>30</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(d\left(I_{RRK}\right)/dt)</td>
<td></td>
<td>16743</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td></td>
<td>0,022</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>Thermal grease thickness≤50u m (\lambda = 1 \text{ W/mK})</td>
<td></td>
<td>1,77</td>
</tr>
</tbody>
</table>

10-Jun-2015 / Revision 4
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE}) or (V_{GS}) [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CE}) [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector-emitter cut-off incl diode</td>
<td>(t_{rr}) or (t_{CE}) [ns]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate-emitter leakage current</td>
<td>(I_{G}) [mA] or (I_{C}) [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated Gate resistor</td>
<td>(R_{gint}) [Ω]</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-on delay time ((t_{on}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise time ((t_{r}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-off delay time ((t_{off}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall time ((t_{f}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-on energy loss per pulse</td>
<td>(E_{on}) [mWs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn-off energy loss per pulse</td>
<td>(E_{off}) [mWs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input capacitance</td>
<td>(C_{iss}) [pF]</td>
<td>4620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output capacitance</td>
<td>(C_{oss}) [pF]</td>
<td>465</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td>Reverse transfer capacitance</td>
<td>(C_{riss}) [pF]</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate charge</td>
<td>(Q_{gate}) [nC]</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH}) [K/W]</td>
<td>1.40</td>
<td></td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>(V_{f})</td>
<td></td>
<td>2.43</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{r})</td>
<td>1200</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rr})</td>
<td></td>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td></td>
<td>6.27</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(dv/(dt)_{max})</td>
<td></td>
<td>9632</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{r})</td>
<td></td>
<td>1.04</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td></td>
<td>2.21</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td></td>
<td>21500</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>(\Delta R/R)</td>
<td>(R_{100}=1486) Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td>(T_{25})</td>
<td>210</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>(B(25/50))</td>
<td>(T_{25})</td>
<td>3.5</td>
<td>mW/K</td>
</tr>
<tr>
<td>(B(25/100))</td>
<td>(T_{25})</td>
<td>3964</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1
Typical output characteristics
$I_C = f(V_{CE})$
At
$t_p = 250 \ \mu s$
$T_j = 25 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$
At
$t_p = 250 \ \mu s$
$T_j = 125 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$
At
$t_p = 250 \ \mu s$
$V_{CE} = 10 \ V$

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$
At
$t_p = 250 \ \mu s$
Figure 5
IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{GON} = 4 \, \Omega \]

\[I_C = 30 \, A \]

Figure 6
IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 30 \, A \]

Figure 7
FWD
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{GON} = 4 \, \Omega \]

Figure 8
FWD
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 30 \, A \]
Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_J = 125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_G)$

With an inductive load at
$T_J = 125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$I_F = 30 \, A$

Figure 11
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
$T_J = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 4 \, \Omega$

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
$T_J = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$I_F = 30 \, A$
$V_{GE} = \pm 15 \, V$
Figure 13 FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

Figure 14 FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(I_F = 30 \, A \)
- \(V_{GE} = \pm 15 \, V \)

Figure 15 FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

Figure 16 FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(I_F = 30 \, A \)
- \(V_{GE} = \pm 15 \, V \)
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_o}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 350 \) V
 - \(I_F = 30 \) A
 - \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_o}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_e = 350 \) V
 - \(I_e = 30 \) A
 - \(V_{GE} = ±15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

- At
 - \(D = t_p / T \)
 - \(R_{30H} = 0,88 \) K/W
 - \(R_{60H} = 0,59 \) K/W

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

- At
 - \(D = t_p / T \)
 - \(R_{30H} = 1,77 \) K/W
 - \(R_{60H} = 1,18 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
<th>R (K/W)</th>
<th>Tau (s)</th>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>2,8E+00</td>
<td>0,05</td>
<td>1,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,20</td>
<td>3,7E-01</td>
<td>0,13</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,45</td>
<td>8,9E-02</td>
<td>0,30</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,13</td>
<td>1,2E-02</td>
<td>0,09</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,02</td>
<td>8,8E-04</td>
<td>0,02</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
<th>R (K/W)</th>
<th>Tau (s)</th>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>5,3E+00</td>
<td>0,06</td>
<td>3,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,23</td>
<td>8,1E-01</td>
<td>0,15</td>
<td>0,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,71</td>
<td>1,4E-01</td>
<td>0,48</td>
<td>0,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,45</td>
<td>4,0E-02</td>
<td>0,30</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,16</td>
<td>8,4E-03</td>
<td>0,11</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,12</td>
<td>1,3E-03</td>
<td>0,08</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power dissipation as a Collector current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Power dissipation as a Forward current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 150 \, ^\circ\text{C} \]
Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

At
- **D**: single pulse
- **Th**: 80 °C
- **V_{GIR}**: ±15 V
- **TJ**: T_{max} °C

Figure 26
Gate voltage vs Gate charge
\[V_{GIR} = f(Q_g) \]

At
- **I_C**: 60 A
Figure 1: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \mu s$
$T_J = 25 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 2: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \mu s$
$T_J = 125 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3: IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$t_p = 250 \mu s$
$V_{CE} = 10 \text{ V}$

Figure 4: FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_p = 250 \mu s$
Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{Gepp} = 4 \, \Omega \]
\[R_{Goff} = 4 \, \Omega \]

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 50 \, A \]

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_L) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{Gepp} = 4 \, \Omega \]

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 50 \, A \]
Typical switching times as a function of collector current

$$t = f(I_C)$$

With an inductive load at:
- $T_J = 125 \, ^\circ C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 4 \, \Omega$
- $R_{goff} = 4 \, \Omega$

Typical reverse recovery time as a function of collector current

$$t_{rr} = f(I_C)$$

Boost

Typical switching times as a function of gate resistor

$$t = f(R_G)$$

With an inductive load at:
- $T_J = 125 \, ^\circ C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $I_C = 50 \, A$

Typical reverse recovery time as a function of IGBT turn on gate resistor

$$t_{rr} = f(R_{gon})$$

At:
- $T_J = 25/125 \, ^\circ C$
- $V_{BE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 4 \, \Omega$

At:
- $T_J = 25/125 \, ^\circ C$
- $V_{BE} = 350 \, V$
- $I_R = 50 \, A$
- $V_{GE} = \pm 15 \, V$
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_A = 350 \, V \]
\[I_F = 50 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_A = 350 \, V \]
\[I_F = 50 \, A \]
\[V_{GE} = \pm 15 \, V \]
Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current $dI_0/dt, dI_{rec}/dt = f(Ic)$

- Parameter values:
 - $T_j = 25/125 ^\circ C$
 - $V_{CE} = 350 V$
 - $V_{GE} = \pm 15 V$
 - $I_F = 50 A$

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $dI_0/dt, dI_{rec}/dt = f(R_{gon})$

- Parameter values:
 - $T_j = 25/125 ^\circ C$
 - $V_{CE} = 350 V$
 - $V_{GE} = \pm 15 V$

Figure 19

IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

- Thermal grease Phase change interface
 - $R (K/W)$ $\tau (s)$
 - 0.25 $8.1E+00$ 0.17 5.45
 - 0.22 $4.7E-01$ 0.14 0.32
 - 0.69 $9.9E-02$ 0.47 0.07
 - 0.14 $2.0E-02$ 0.10 0.01
 - 0.05 $4.1E-03$ 0.03 0.00
 - 0.05 $4.0E-04$ 0.03 0.00

Figure 20

FWD transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

- Thermal grease Phase change interface
 - $R (K/W)$ $\tau (s)$
 - 0.08 $2.5E+00$ 0.05 1.64
 - 0.32 $3.3E-01$ 0.21 0.22
 - 1.23 $8.5E-02$ 0.82 0.06
 - 0.32 $1.1E-02$ 0.21 0.01
 - 0.18 $2.1E-03$ 0.12 0.00
 - 0.09 $5.7E-04$ 0.06 0.00

Vincotech

Boost datasheet

copyright Vincotech 16

10 Jun. 2015 / Revision 4
Figure 21
IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

**Figure 22
IGBT**
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

**Figure 23
FWD**
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

**Figure 24
FWD**
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

At
\[T_j = 150 \, ^\circ C \]

At
\[T_j = 150 \, ^\circ C \]

At
\[V_{GE} = 15 \, V \]
Buck & Boost Inverse Diode

Figure 25

Boost Inverse Diode

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

![Graph showing typical diode forward current as a function of forward voltage.](image)

At

\[t_p = 250 \ \mu s \]

Figure 26

Boost Inverse Diode

Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

![Graph showing diode transient thermal impedance as a function of pulse width.](image)

At

\[D = \frac{t_p}{T} \]

\[R_{thJH} = 3.66 \ \text{K/W} \]

Figure 27

Boost Inverse Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

![Graph showing power dissipation as a function of heatsink temperature.](image)

At

\[T_j = 175 \ ^\circ C \]

Figure 28

Boost Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

![Graph showing forward current as a function of heatsink temperature.](image)

At

\[T_j = 175 \ ^\circ C \]
Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions BUCK IGBT

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>$125 , ^\circ C$</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>$4 , \Omega$</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>$4 , \Omega$</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- **V_{GE} (0%)**: $-15 \, V$
- **V_{CE} (100%)**: $700 \, V$
- **I_C (100%)**: $30 \, A$
- **t_{doff}**: $0.12 \, \mu s$
- **t_{Eoff}**: $0.26 \, \mu s$

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- **V_{GE} (0%)**: $-15 \, V$
- **V_{CE} (100%)**: $700 \, V$
- **I_C (100%)**: $30 \, A$
- **t_{don}**: $0.05 \, \mu s$
- **t_{Eon}**: $0.09 \, \mu s$

Turn-off Switching Waveforms & definition of t_f

- **V_{CE} (100%)**: $700 \, V$
- **I_C (100%)**: $30 \, A$
- **t_f**: $0.006 \, \mu s$

Turn-on Switching Waveforms & definition of t_r

- **V_{CE} (100%)**: $700 \, V$
- **I_C (100%)**: $30 \, A$
- **t_r**: $0.004 \, \mu s
Switching Definitions BUCK IGBT

Figure 5 BUCK IGBT
Turn-off Switching Waveforms & definition of $t_{E_{off}}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{off} (100%)</td>
<td>21.01 kW</td>
</tr>
<tr>
<td>E_{off} (100%)</td>
<td>0.39 mJ</td>
</tr>
<tr>
<td>$t_{E_{off}}$</td>
<td>0.26 μs</td>
</tr>
</tbody>
</table>

Figure 6 BUCK IGBT
Turn-on Switching Waveforms & definition of $t_{E_{on}}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{on} (100%)</td>
<td>21.01 kW</td>
</tr>
<tr>
<td>E_{on} (100%)</td>
<td>0.35 mJ</td>
</tr>
<tr>
<td>$t_{E_{on}}$</td>
<td>0.09 μs</td>
</tr>
</tbody>
</table>

Figure 7 BUCK FWD
Turn-off Switching Waveforms & definition of t_{rr}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_d (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>I_d (100%)</td>
<td>30 A</td>
</tr>
<tr>
<td>I_{RRM} (100%)</td>
<td>10 A</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>0.026 μs</td>
</tr>
</tbody>
</table>

copyright Vincotech
Switching Definitions BUCK IGBT

Figure 8
Turn-on Switching Waveforms & definition of t_{qrr}
(t_{qrr} = integrating time for Q_{rr})

- I_d (100%) = 30 A
- Q_{rr} (100%) = 0.943 μC
- t_{qrr} = 0.05 μs

<table>
<thead>
<tr>
<th>I_d (100%)</th>
<th>30 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{rr} (100%)</td>
<td>0.943 μC</td>
</tr>
<tr>
<td>t_{qrr}</td>
<td>0.05 μs</td>
</tr>
</tbody>
</table>

Figure 9
Turn-on Switching Waveforms & definition of t_{rec}
(t_{rec} = integrating time for E_{rec})

- P_{rec} (100%) = 21.01 kW
- E_{rec} (100%) = 0.098 mJ
- t_{rec} = 0.05 μs

<table>
<thead>
<tr>
<th>P_{rec} (100%)</th>
<th>21.01 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{rec} (100%)</td>
<td>0.098 mJ</td>
</tr>
<tr>
<td>t_{rec}</td>
<td>0.05 μs</td>
</tr>
</tbody>
</table>

Measurement circuits

Figure 10
BUCK stage switching measurement circuit

Figure 11
BOOST stage switching measurement circuit
Switching Definitions BOOST IGBT

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>124 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- $V_{GE} (0\%) = -15$ V
- $V_{GE} (100\%) = 15$ V
- $V_{CE} (100\%) = 350$ V
- $I_{C} (100\%) = 50$ A
- $t_{doff} = 0,20$ µs
- $t_{Eoff} = 0,53$ µs

Figure 2
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- $V_{GE} (0\%) = -15$ V
- $V_{GE} (100\%) = 15$ V
- $V_{CE} (100\%) = 350$ V
- $I_{C} (100\%) = 50$ A
- $t_{don} = 0,088$ µs
- $t_{Eon} = 0,14$ µs

Figure 3
Turn-off Switching Waveforms & definition of t_f

- $V_{CE} (100\%) = 350$ V
- $I_{C} (100\%) = 50$ A
- $t_f = 0,093$ µs

Figure 4
Turn-on Switching Waveforms & definition of t_r

- $V_{CE} (100\%) = 350$ V
- $I_{C} (100\%) = 50$ A
- $t_r = 0,012$ µs
Switching Definitions BOOST IGBT

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 17,48 kW
- E_{off} (100%) = 2,25 mJ
- t_{Eoff} = 0,53 µs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 17,48 kW
- E_{on} (100%) = 0,54 mJ
- t_{Eon} = 0,14 µs

Figure 7
Turn-off Switching Waveforms & definition of t_{rr}

- Vd (100%) = 350 V
- Id (100%) = 50 A
- I_{RRM} (100%) = 10 A
- t_{rr} = 0,123 µs
Switching Definitions BOOST IGBT

Figure 8

BOOST FWD

Turn-on Switching Waveforms & definition of t_{qrr}
($t_{qrr} =$ integrating time for Q_{rr})

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>Id</th>
<th>Qrr</th>
<th>t_{qrr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9

BOOST FWD

Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>P_{rec}</th>
<th>E_{rec}</th>
<th>t_{Erec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Id (100%) = 50 A
Qrr (100%) = 6,267 μC
$t_{qrr} =$ 1,00 μs

Prec (100%) = 17,48 kW
Erec (100%) = 1,966 mJ
$t_{Erec} =$ 1,00 μs

Measurement circuits

Figure 10

BUCK stage switching measurement circuit

Figure 11

BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>In DataMatrix as</th>
<th>In packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o thermal paste 12mm housing solder pin</td>
<td>10-FZ06NRA060FU-P967F08</td>
<td>P967F08</td>
<td>P967F08</td>
</tr>
<tr>
<td>w/o thermal paste 12mm housing Press-fit pin</td>
<td>10-PZ06NRA060FU-P967F08Y</td>
<td>P967F08Y</td>
<td>P967F08Y</td>
</tr>
</tbody>
</table>

Pinout

![Diagram of pinout](image)

- **Pinout Diagram**

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5, T6</td>
<td>IGBT</td>
<td>650V</td>
<td>30A</td>
<td>Buck switch</td>
<td></td>
</tr>
<tr>
<td>D3, D4</td>
<td>FWD</td>
<td>600V</td>
<td>30A</td>
<td>Buck diode</td>
<td></td>
</tr>
<tr>
<td>T1, T2</td>
<td>IGBT</td>
<td>600V</td>
<td>50A</td>
<td>Boost switch</td>
<td></td>
</tr>
<tr>
<td>D1, D2</td>
<td>FWD</td>
<td>1200V</td>
<td>18A</td>
<td>Boost diode</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>600V</td>
<td>10A</td>
<td>Buck inverse diode</td>
<td></td>
</tr>
<tr>
<td>D9, D10</td>
<td>FWD</td>
<td>600V</td>
<td>10A</td>
<td>Boost inverse diode</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Pinout Table**

- **Identification Table**

- **Function Table**

- **Comment Table**

10 Jun. 2015 / Revision 4

- **Copyright**

- **Vincotech**
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.