Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{rms}</td>
<td>T_{j}=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{f}</td>
<td>T_{j}=T_{j}\text{max} T_{c}=80°C</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{f\text{rms}}</td>
<td>I_{f} limited by T_{j}\text{max}</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>T_{j}=T_{j}\text{max} T_{c}=80°C</td>
<td>36</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j}\text{max}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Buck MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>V_{\text{DS}}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_{D}</td>
<td>T_{j}=T_{j}\text{max} T_{c}=80°C</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_{\text{DS\text{pulse}}}</td>
<td>I_{D} limited by T_{j}\text{max}</td>
<td>230</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{\text{tot}}</td>
<td>T_{j}=T_{j}\text{max} T_{c}=80°C</td>
<td>125</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{\text{GS}}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j}\text{max}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j=T_{max}$ $T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>47</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPUL}</td>
<td>I_L limited by T_{max}</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>85 19</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_{th}=80^\circ C$ $T_{th}=150^\circ C$ $V_{GE}=15V$</td>
<td>±20 6</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>V_{CC}</td>
<td>360 6</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td>$T_{th}=80^\circ C$ $V_{th}=15V$</td>
<td>175 150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMM}</td>
<td>$T_j=25^\circ C$</td>
<td>600 6</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>21 46</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td>$T_{th}=80^\circ C$</td>
<td>150 150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMM}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>16 21</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F_{RMM}}$</td>
<td>I_L limited by T_{max}</td>
<td>36 8</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max} T_{th}=80^\circ C$ $T_{th}=80^\circ C$</td>
<td>30 30</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td>$T_{th}=80^\circ C$</td>
<td>150 150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{slop}</td>
<td>T_{Op}</td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td>T_{max}</td>
<td>-40...+(Tjmax - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>$t=2s$ DC</td>
<td>4000 4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>(V_D)</td>
<td>(T_J=25^\circ C)</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{\text{fmax}})</td>
<td>(T_J=125^\circ C)</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{\text{rec}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{\text{erec}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>Peak of fall of recovery charge</td>
<td>(I_{\text{rec}})</td>
<td>(T_J=25^\circ C)</td>
<td>167.43</td>
<td>A/\mu s</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{\text{rec}})</td>
<td>(T_J=125^\circ C)</td>
<td>155.17</td>
<td>A/\mu s</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{\text{thJH}})</td>
<td></td>
<td>1.95</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Buck MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>(R_{\text{ds(on)}})</td>
<td>(f=1 , \text{MHz})</td>
<td>44</td>
<td>m\Omega</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>(V_{\text{G(th)}})</td>
<td>(V_{\text{DS}=V_{\text{GS}}})</td>
<td>0.003</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{\text{gss}})</td>
<td></td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{\text{gs}})</td>
<td>(T_J=25^\circ C)</td>
<td>25</td>
<td>\mu A</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>(t_{\text{on}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_{\text{r}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>(t_{\text{off}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{\text{f}})</td>
<td>(R_{\text{gon}}=8 , \Omega)</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{\text{on}})</td>
<td>(T_J=25^\circ C)</td>
<td>0.161</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{\text{off}})</td>
<td>(T_J=125^\circ C)</td>
<td>0.265</td>
<td>mWs</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_{\text{g}})</td>
<td></td>
<td>150</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{\text{gs}})</td>
<td></td>
<td>190</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{\text{gd}})</td>
<td></td>
<td>34</td>
<td>nC</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{\text{iss}})</td>
<td>(f=1 , \text{MHz})</td>
<td>6800</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{\text{oss}})</td>
<td>(T_J=25^\circ C)</td>
<td>320</td>
<td>pF</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{\text{thJH}})</td>
<td></td>
<td>0.56</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{RSS}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{igm}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{fsw}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{fsw}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{riss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{Gsat}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{FRR}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$dI/dt(nec)_{max}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* see details on Thermistor charts on Figure 2.
Buck

Figure 1
Typical output characteristics
$IC = f(VCE)$

At
$tp = 250 \ \mu s$
$Tj = 25 \ ^\circ C$
V_{GE} from 4 V to 14 V / Condition

Figure 2
Typical output characteristics
$IC = f(VCE)$

At
$tp = 250 \ \mu s$
$Tj = 125 \ ^\circ C$
V_{GE} from 4 V to 14 V in steps of 1 V

Figure 3
Typical transfer characteristics
$IC = f(VGE)$

Figure 4
Typical diode forward current as a function of forward voltage
$IF = f(VF)$

At
$tp = 250 \ \mu s$
V_{CE} = 10 V
$Tj = 25 \ ^\circ C$
$Tj = T_{j_{\text{max}}}-25 \ ^\circ C$

At
$tp = 250 \ \mu s$
$Tj = 25 \ ^\circ C$

Copyright Vincotech
Figure 5
Typical switching energy losses as a function of collector current
\(E = f(I_C) \)
With an inductive load at
\(T_j = 25/125 \, ^\circ \text{C} \)
\(V_{CE} = 350 \, \text{V} \)
\(V_{GE} = 15 \, \text{V} \)
\(R_{gon} = 8 \, \Omega \)
\(R_{goff} = 8 \, \Omega \)

Figure 6
Typical switching energy losses as a function of gate resistor
\(E = f(R_G) \)
With an inductive load at
\(T_j = 25/125 \, ^\circ \text{C} \)
\(V_{CE} = 350 \, \text{V} \)
\(V_{GE} = 15 \, \text{V} \)
\(I_C = 30 \, \text{A} \)

Figure 7
Typical reverse recovery energy loss as a function of collector current
\(E_{\text{rec}} = f(I_C) \)
With an inductive load at
\(T_j = 25/125 \, ^\circ \text{C} \)
\(V_{CE} = 350 \, \text{V} \)
\(V_{GE} = 15 \, \text{V} \)
\(R_{gon} = 8 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\(E_{\text{rec}} = f(R_G) \)
With an inductive load at
\(T_j = 25/125 \, ^\circ \text{C} \)
\(V_{CE} = 350 \, \text{V} \)
\(V_{GE} = 15 \, \text{V} \)
\(I_C = 30 \, \text{A} \)
Figure 9 MOSFET
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
\(T_j = 125 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(V_{GE} = 15 \, V \)
\(R_{gon} = 8 \, \Omega \)
\(R_{goff} = 8 \, \Omega \)

Figure 10 MOSFET
Typical switching times as a function of gate resistor
\(t = f(R_G) \)

With an inductive load at
\(T_j = 125 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(V_{GE} = 15 \, V \)
\(I_c = 30 \, A \)

Figure 11 FRED
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
\(T_j = 25/125 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(V_{GE} = 15 \, V \)
\(R_{gon} = 8 \, \Omega \)

Figure 12 FRED
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
\(T_j = 25/125 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(I_r = 30 \, A \)
\(V_{GE} = 15 \, V \)
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_G = 15 \) V
- \(R_{gon} = 8 \) Ω

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_G = 15 \) V
- \(R_{gon} = 8 \) Ω
Typical rate of fall of forward and reverse recovery current
as a function of collector current
g\text{d}i_0/\text{d}t, g\text{d}i_{rec}/\text{d}t = f(\text{I}_c)

At
\text{T}_j = 25/125 \, ^\circ\text{C}
\text{V}_{CE} = 350 \, \text{V}
\text{V}_{GE} = 15 \, \text{V}
R_{gon} = 8 \, \Omega

IGBT transient thermal impedance as a function of pulse width
Z_{thJH} = f(t_p)

At
D = t_p / T
R_{\Theta JH} = 0.56 \, \text{K/W}

IGBT thermal model values
R (\text{C/W}) \quad \text{Tau (s)}
0.04 \quad 8.6E+00
0.13 \quad 1.4E+00
0.23 \quad 2.2E-01
0.09 \quad 3.6E-02
0.03 \quad 5.0E-03
0.05 \quad 2.6E-04

FRED thermal model values
R (\text{C/W}) \quad \text{Tau (s)}
0.06 \quad 7.9E+00
0.24 \quad 1.0E+00
0.90 \quad 1.4E-01
0.50 \quad 3.1E-02
0.17 \quad 3.7E-03
0.09 \quad 5.7E-04
Buck

Figure 21 MOSFET
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

\[I_C = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

- single heating
- overall heating

Figure 22 MOSFET
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

\[V_{GE} = 15 \, V \]

Figure 23 FRED
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

Figure 24 FRED
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]
Buck

Figure 25
Safe operating area as a function of collector-emitter voltage

$IC = f(V_{CE})$

Figure 26
Gate voltage vs Gate charge

$V_{GE} = f(Q_g)$

At

- $D =$ single pulse
- $T_{th} =$ 80 $^\circ$C
- $V_{GE} =$ 15 V
- $T_j =$ $T_{j_{max}}$ $^\circ$C

$IC = 30$ A
Boost

Figure 1
Typical output characteristics
\(I_C = f(V_{CE}) \)

- At
 - \(t_{p} = 250 \) μs
 - \(T_j = 25 \) °C
 - \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
\(I_C = f(V_{CE}) \)

- At
 - \(t_{p} = 250 \) μs
 - \(T_j = 125 \) °C
 - \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
\(I_C = f(V_{GE}) \)

Figure 4
Typical diode forward current as a function of forward voltage
\(I_F = f(V_F) \)

At
- \(I_F = 250 \) μs
- \(V_{CE} = 10 \) V
- \(T_j = T_{j_{max}} - 25 \) °C
- \(T_j = 25 \) °C
Typical switching energy losses as a function of collector current

$$E = f(I_C)$$

With an inductive load at

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = 15 \, V$$
- $$R_{gon} = 8 \, \Omega$$
- $$I_C = 30 \, A$$

Typical reverse recovery energy loss as a function of collector current

$$E_{rec} = f(I_C)$$

With an inductive load at

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = 15 \, V$$
- $$R_{gon} = 8 \, \Omega$$
Figure 9 IGBT
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(R_{goff} = 8 \, \Omega \)

Figure 10 IGBT
Typical switching times as a function of gate resistor
\(t = f(R_g) \)

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = 15 \, V \)
- \(I_C = 30 \, A \)

Figure 11 FRED
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)

Figure 12 FRED
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{BE} = 350 \, V \)
- \(I_C = 30 \, A \)
- \(V_{GE} = 15 \, V \)
Boost

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

\[Q_{rr, High T} \]
\[Q_{rr, Low T} \]

At
\[T_j = 25/125 \ ^\circ C \]
\[V_{CE} = 350 \ V \]
\[V_{GE} = 15 \ V \]
\[R_{gon} = 8 \ \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

\[Q_{rr, High T} \]
\[Q_{rr, Low T} \]

At
\[T_j = 25/125 \ ^\circ C \]
\[V_{CE} = 350 \ V \]
\[I_F = 30 \ A \]
\[V_{GE} = 15 \ V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

\[I_{RRM, High T} \]
\[I_{RRM, Low T} \]

At
\[T_j = 25/125 \ ^\circ C \]
\[V_{CE} = 350 \ V \]
\[V_{GE} = 15 \ V \]
\[R_{gon} = 8 \ \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

\[I_{RRM, High T} \]
\[I_{RRM, Low T} \]

At
\[T_j = 25/125 \ ^\circ C \]
\[V_{CE} = 350 \ V \]
\[I_F = 30 \ A \]
\[V_{GE} = 15 \ V \]
Figure 17: FRED
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 18: FRED
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

At
- \(T_j = 25/125 \) °C
- \(V_R = 350 \) V
- \(I_p = 30 \) A
- \(V_{GE} = 15 \) V

Figure 19: IGBT
IGBT transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 1.11 \) K/W

IGBT thermal model values
\(R \) (C/W), \(\tau \) (s)
- 0.06, 9.9E+00
- 0.22, 1.2E+00
- 0.59, 1.4E-01
- 0.17, 2.2E-02
- 0.03, 2.7E-03
- 0.04, 2.7E-04

Figure 20: FRED
FRED transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 2.32 \) K/W

FRED thermal model values
\(R \) (C/W), \(\tau \) (s)
- 0.04, 9.8E+00
- 0.25, 7.7E-01
- 1.24, 1.2E-01
- 0.44, 2.0E-02
- 0.25, 2.6E-03
- 0.09, 4.3E-04

copyright Vincotech
Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]
\[V_{GE} = 15 \ \text{V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \ ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \ ^\circ\text{C} \]
Figure 25 Boost Inverse Diode

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

\[I_{F} = 250 \mu s \]

\[T_j = 25°C \]

\[T_j = T_{j,\text{max}} - 25°C \]

Figure 26 Boost Inverse Diode

Diode transient thermal impedance as a function of pulse width

\[Z_{th,JH} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{th,JH} = 4.36 \text{ K/W} \]
Thermistor

Figure 1

Typical NTC characteristic

as a function of temperature

\[R(T) = f(T) \]

Figure 2

Typical NTC resistance values

\[
R(T) = R_{25} \cdot e^{\left(\frac{R_{25}(\frac{1}{T} - \frac{1}{T_{25}})}{1} \right)} \quad [\Omega]
\]

<table>
<thead>
<tr>
<th>T [°C]</th>
<th>R_{25} [Ω]</th>
<th>R_{min} [Ω]</th>
<th>R_{max} [Ω]</th>
<th>ΔR/R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>1458070.6</td>
<td>1060249.3</td>
<td>1846591.9</td>
<td>26.7</td>
</tr>
<tr>
<td>0</td>
<td>71804.2</td>
<td>59724.4</td>
<td>83884</td>
<td>16.8</td>
</tr>
<tr>
<td>10</td>
<td>43790.4</td>
<td>37094.4</td>
<td>60466.5</td>
<td>15.3</td>
</tr>
<tr>
<td>20</td>
<td>27484.6</td>
<td>23684.6</td>
<td>31284.7</td>
<td>13.8</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
<td>19109.3</td>
<td>24890.7</td>
<td>13.1</td>
</tr>
<tr>
<td>30</td>
<td>17723.3</td>
<td>15512.2</td>
<td>19954.4</td>
<td>12.5</td>
</tr>
<tr>
<td>50</td>
<td>6467.9</td>
<td>4680.6</td>
<td>6955.1</td>
<td>8.8</td>
</tr>
<tr>
<td>70</td>
<td>3848.6</td>
<td>3546</td>
<td>4151.1</td>
<td>7.9</td>
</tr>
<tr>
<td>80</td>
<td>2757.7</td>
<td>2588.2</td>
<td>2947.1</td>
<td>6.9</td>
</tr>
<tr>
<td>90</td>
<td>2068.9</td>
<td>1889.7</td>
<td>2128.2</td>
<td>5.9</td>
</tr>
<tr>
<td>100</td>
<td>1486.1</td>
<td>1411.8</td>
<td>1560.4</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>400.2</td>
<td>354.8</td>
<td>435.7</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Copyright Vincotech 19 Revision: 2
Switching Definitions BUCK MOSFET

General conditions

\[T_j = 125 \, ^\circ C \]
\[R_{on} = 8 \, \Omega \]
\[R_{off} = 8 \, \Omega \]

Figure 1 BUCK MOSFET

Turn-off Switching Waveforms & definition of \(t_{\text{off}} \), \(t_{\text{eff}} \)

(\(t_{\text{off}} = \) integrating time for \(E_{\text{off}} \))

Figure 2 BUCK MOSFET

Turn-on Switching Waveforms & definition of \(t_{\text{on}} \), \(t_{\text{con}} \)

(\(t_{\text{con}} = \) integrating time for \(E_{\text{on}} \))

Figure 3 BUCK MOSFET

Turn-off Switching Waveforms & definition of \(t_f \)

Figure 4 BUCK MOSFET

Turn-on Switching Waveforms & definition of \(t_r \)

\[V_{GS}(0\%) = 0 \, V \]
\[V_{GS}(100\%) = 15 \, V \]
\[V_{D}(100\%) = 350 \, V \]
\[I_f(100\%) = 30 \, A \]
\[t_{\text{off}} = 0.30 \, \mu s \]
\[t_{\text{eff}} = 0.31 \, \mu s \]

\[V_{GS}(0\%) = 0 \, V \]
\[V_{GS}(100\%) = 15 \, V \]
\[V_{D}(100\%) = 350 \, V \]
\[I_f(100\%) = 30 \, A \]
\[t_{\text{on}} = 0.04 \, \mu s \]
\[t_{\text{con}} = 0.05 \, \mu s \]

\[V_{C}(100\%) = 350 \, V \]
\[I_f(100\%) = 30 \, A \]
\[t_f = 0.01 \, \mu s \]

\[V_{C}(100\%) = 350 \, V \]
\[I_f(100\%) = 30 \, A \]
\[t_r = 0.01 \, \mu s \]
Switching Definitions BUCK MOSFET

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 10.48\ kW$
- $E_{off}(100\%) = 0.11\ mJ$
- $t_{Eoff} = 0.31\ \mu s$

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 10.48\ kW$
- $E_{on}(100\%) = 0.27\ mJ$
- $t_{Eon} = 0.05\ \mu s$

Figure 7
Gate voltage vs Gate charge (measured)

- $V_{Goff} = 0\ V$
- $V_{Gon} = 15\ V$
- $V_{G(100\%)} = 350\ V$
- $I_{G(100\%)} = 30\ A$
- $Q_{g} = 191.44\ nC$

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{D(100\%)} = 350\ V$
- $I_{D(100\%)} = 30\ A$
- $t_{rr}1\ 10\% = -70\ A$
- $t_{rr}1\ 100\% = 0.02\ \mu s$
Switching Definitions BUCK MOSFET

Turn-on Switching Waveforms & definition of \(t_{Qr} \)

\[t_{Qr} = \text{integrating time for } Q_r \]

Turn-on Switching Waveforms & definition of \(t_{Erec} \)

\[t_{Erec} = \text{integrating time for } E_{rec} \]

<table>
<thead>
<tr>
<th>(I_d) (100%)</th>
<th>30 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_r) (100%)</td>
<td>0.98 μC</td>
</tr>
<tr>
<td>(t_{Qr})</td>
<td>0.05 μs</td>
</tr>
<tr>
<td>(P_{rec}) (100%)</td>
<td>10.48 kW</td>
</tr>
<tr>
<td>(E_{rec}) (100%)</td>
<td>0.31 mJ</td>
</tr>
<tr>
<td>(t_{Erec})</td>
<td>0.05 μs</td>
</tr>
</tbody>
</table>

Measurement circuits

Figure 11

BUCK stage switching measurement circuit

Figure 12

BOOST stage switching measurement circuit
Switching Definitions Boost IGBT

General conditions:

- $T_J = 125 \, ^\circ C$
- $R_{son} = 8 \, \Omega$
- $R_{goff} = 8 \, \Omega$

Figure 1: Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

Turning off time for E_{off}

- $V_{GE} (0\%) = 0 \, V$
- $V_{GE} (100\%) = 15 \, V$
- $V_{CE} (100\%) = 350 \, V$
- $I_C (100\%) = 30 \, A$
- $t_{Eoff} = 0,70 \, \mu s$
- $t_{doff} = 0,50 \, \mu s$

Figure 2: Turn-on Switching Waveforms & definition of t_{ton}, t_{Eon}

Turning on time for E_{on}

- $V_{GE} (0\%) = 0 \, V$
- $V_{GE} (100\%) = 15 \, V$
- $V_{CE} (100\%) = 350 \, V$
- $I_C (100\%) = 30 \, A$
- $t_{Eon} = 0,14 \, \mu s$
- $t_{ton} = 0,04 \, \mu s$

Figure 3: Turn-off Switching Waveforms & definition of t_f

Figure 4: Turn-on Switching Waveforms & definition of t_r

Switching Definitions Boost IGBT

Figure 5

Figure 5

Figure 6

Figure 6

Figure 7

Figure 7

Figure 8

Figure 8

Poff (100%) = 10.55 kW
Eoff (100%) = 1.16 mJ
tEoff = 0.70 μs

Pon (100%) = 10.55 kW
Eon (100%) = 0.96 mJ
tEon = 0.14 μs

VGEoff = 0 V
Vd (100%) = 350 V
Eoff (100%) = 1.16 mJ
tEoff = 0.70 μs

VGEon = 15 V
Id (100%) = 30 A
Eon (100%) = 0.96 mJ
tEon = 0.14 μs

Id (100%) = 350 A
Vd (100%) = 30 V
Eoff (100%) = 1.16 mJ
tEoff = 0.70 μs

Qg (nC) = 407.76 nC
trr = 0.05 μs
Switching Definitions Boost IGBT

Figure 9
Turn-on Switching Waveforms & definition of t\(_{\text{Qrr}}\)

\(t_{\text{Qrr}} = \text{integrating time for } Q_{\text{rr}}\)

\(I_d(100\%) = 30 \text{ A}\)

\(Q_{\text{rr}}(100\%) = 5.74 \mu\text{C}\)

\(t_{\text{Qrr}} = 0.16 \mu\text{s}\)

Figure 10
Turn-on Switching Waveforms & definition of t\(_{\text{Erec}}\)

\(t_{\text{Erec}} = \text{integrating time for } E_{\text{rec}}\)

\(P_{\text{rec}}(100\%) = 10.55 \text{ kW}\)

\(E_{\text{rec}}(100\%) = 1.39 \text{ mJ}\)

\(t_{\text{Erec}} = 0.16 \mu\text{s}\)

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FZ06NRA045FH01-P965F10</td>
<td>P965F10</td>
<td>P965F10</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

Pinout

19 G3 16 S3
13 G1 13 B1
8 U2 7 S2
2 G4 1 B4

pin 3 and 17 are NOT CONNECTED

GND 6, 14 Line 9, 10, 11
DC+ 15, 16 NTC1 20 NTC2 21
DC- 4, 5

Copyright Vincotech 2008

Revision: 2
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.