Preliminary Datasheet for FZ06NPA070FP01

Features
- "PS: 70A parallel switch (60A PT and 99mΩ)
- neutral point clamped inverter
- reactive power capability
- low inductance layout

Target Applications
- solar inverter
- UPS

Types
- FZ06NPA070FP01

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>Tj=T_{max}</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{c}</td>
<td>Tj=T_{max}</td>
<td>44</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{pul}</td>
<td>I_{p} limited by T_{max}</td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>Tj=T_{max}</td>
<td>71</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>Tj=T_{max}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{sc}</td>
<td>V_{GE}=15V</td>
<td>5</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck IGBT

- Collector-emitter break down voltage: V_{CE}, 600 V
- DC collector current: I_{c}, 44 A
- Repetitive peak collector current: I_{pul}, 240 A
- Power dissipation per IGBT: P_{tot}, 71 W
- Gate-emitter peak voltage: V_{GE}, ±20 V
- Short circuit ratings: t_{sc}, 5 μs
- Maximum Junction Temperature: T_{jmax}, 150 °C

Buck Diode

- Peak Repetitive Reverse Voltage: V_{max}, 600 V
- DC forward current: I_{f}, 21 A
- Repetitive peak forward current: I_{pul}, 120 A
- Power dissipation per Diode: P_{tot}, 41 W
- Maximum Junction Temperature: T_{jmax}, 150 °C

Copyright by Vincotech

Revision: 3
Maximum Ratings

Buck MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source breakdown voltage</td>
<td>V_{DS}</td>
<td>$T_{J}=T_{max}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_D</td>
<td>$T_{r}=80°C$</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{c}=80°C$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_{pulsa}</td>
<td>I_L limited by $T_{J,max}$</td>
<td>93</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>54</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>97</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{gs}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_{J}=T_{max}$</td>
<td>57</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>75</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPULS}</td>
<td>I_L limited by $T_{J,max}$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>85</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>129</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_{J}=150°C$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$V_{GE}=15V$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_{J}=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_{J}=T_{max}$</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>21</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>52</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_{J}=25°C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_{J}=T_{max}$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{RMS}</td>
<td>I_L limited by $T_{J,max}$</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>34</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{r}=80°C$</td>
<td>52</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

T_j=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T<sub>stg</sub></td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T<sub>op</sub></td>
<td></td>
<td>-40...+(T<sub>jmax</sub> - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V<sub>in</sub></td>
<td>t=2s</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Value</td>
<td>Unit</td>
</tr>
</tbody>
</table>

Buck IGBT *

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_GE(th)</td>
<td>V_C=E=G</td>
<td>0.00025</td>
<td>4.5</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_CE(sat)</td>
<td>15</td>
<td>70</td>
<td>1.45</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_CES</td>
<td>0</td>
<td>600</td>
<td>250</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_GES</td>
<td>±20</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_PRT</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance **</td>
<td>C_Ciss</td>
<td></td>
<td></td>
<td>4+4,7</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_Ciss</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_Ciss</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gate charge **</td>
<td>Q_G</td>
<td>±15</td>
<td>Tj=25°C</td>
<td>225+70</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>RthJH</td>
<td>Thermal grease thickness50um</td>
<td>A=1 W/mK</td>
<td>0.99</td>
</tr>
</tbody>
</table>

* see dynamic characteristic at Buck MOSFET

**additional value stands for built-in capacitor

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_RRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>Rgon=8 Ω</td>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dV/dt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{re}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>RthJH</td>
<td>Thermal grease thickness50um</td>
<td>A=1 W/mK</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Buck MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>R_{dss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>V_{GES(th)}</td>
<td>V_C=E=G</td>
<td>0.001</td>
<td>2.1</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{gs}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{gs}</td>
<td>0</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{ON}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{R}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>t_{OFF}</td>
<td>Rgon=8 Ω **</td>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{F}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_{g}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gd}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>f=1MHz</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>RthJH</td>
<td>Thermal grease thickness50um</td>
<td>A=1 W/mK</td>
<td>1.29</td>
</tr>
</tbody>
</table>

* see schematic of the Gate-complex at characteristic figures

** see schematic of the Gate-complex at characteristic figures

* Copyright by Vincotech
Characteristic Values

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE(th)} V_{GE}$</td>
<td>0.0012</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>$V_{GS(th)} V_{CE}$</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td></td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{R}</td>
<td>$R_{g(on)}=8 \Omega$</td>
<td>≤15</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>$R_{g(off)}=8 \Omega$</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>R=1MHz</td>
<td>0</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rmin}</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gmin}</td>
<td></td>
<td>15</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness=50um $\lambda=1$ W/mK</td>
<td>1.11</td>
<td>KW</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{D}</td>
<td></td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness=50um $\lambda=1$ W/mK</td>
<td>4.36</td>
<td>KW</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{D}</td>
<td></td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>1200</td>
<td>mA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>$I_{(peak)}$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>$t_{(r)}$</td>
<td></td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>$R_{g(on)}=8 \Omega$</td>
<td>40</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$di/dt,(max)$</td>
<td></td>
<td></td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness=50um $\lambda=1$ W/mK</td>
<td>2.04</td>
<td>KW</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance*</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td></td>
<td></td>
<td>K</td>
</tr>
</tbody>
</table>

* See details on Thermistor charts on Figure 2.
Buck

Figure 1: MOSFET
Typical output characteristics
$\text{IC} = f(\text{VCE})$

At
$\tau_p = 250 \ \mu\text{s}$
$\text{Tj} = 25 ^\circ\text{C}$
$\text{VGE from 3 V to 19 V in steps of 2 V}$

Figure 2: MOSFET
Typical output characteristics
$\text{IC} = f(\text{VCE})$

At
$\tau_p = 250 \ \mu\text{s}$
$\text{Tj} = 125 ^\circ\text{C}$
$\text{VGE from 3 V to 19 V in steps of 2 V}$

Figure 3: MOSFET
Typical transfer characteristics
$\text{IC} = f(\text{VGE})$

At
$\tau_p = 250 \ \mu\text{s}$
$\text{Tj} = \text{Tjmax-25 ^\circ\text{C}}$

Figure 4: FRED
Typical diode forward current as a function of forward voltage
$\text{IF} = f(\text{VF})$

At
$\tau_p = 250 \ \mu\text{s}$
$\text{Tj} = \text{Tjmax-25 ^\circ\text{C}}$
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 8 \, \Omega \]
\[R_{goff} = 8 \, \Omega \]

Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 8 \, \Omega \]

Copyright by Vincotech
Buck

Figure 9 MOSFET
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_j = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{g(on)} = 8 \, \Omega \)
- \(R_{g(off)} = 8 \, \Omega \)

Figure 10 MOSFET
Typical switching times as a function of gate resistor
\(t = f(R_g) \)

With an inductive load at
- \(T_j = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_c = 40 \, \text{A} \)

Figure 11 FRED
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_c) \)

At
- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{g(on)} = 8 \, \Omega \)

Figure 12 FRED
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{g(on)}) \)

At
- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_g = 40 \, \text{A} \)
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(R_{gon} = 8 \) Ω

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(R_{gon} = 8 \) Ω
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

Figure 19
IGBT transient thermal impedance as a function of pulse width

\[
Z_{thJH} = f(t_p)
\]

Figure 20
FRED transient thermal impedance as a function of pulse width

\[
Z_{thJH} = f(t_p)
\]
Buck

Figure 21
Power dissipation as a function of heatsink temperature
\(P_{tot} = f(T_h) \)

\[\begin{align*}
T_j &= 150 \degree C \\
\end{align*} \]

Figure 22
Collector current as a function of heatsink temperature
\(I_C = f(T_h) \)

\[\begin{align*}
T_j &= 150 \degree C \quad V_{GE} = 15 \ V
\end{align*} \]

Figure 23
Power dissipation as a function of heatsink temperature
\(P_{tot} = f(T_h) \)

\[\begin{align*}
T_j &= 150 \degree C \\
\end{align*} \]

Figure 24
Forward current as a function of heatsink temperature
\(I_F = f(T_h) \)

\[\begin{align*}
T_j &= 150 \degree C \\
\end{align*} \]
Figure 25
Safe operating area as a function of collector-emitter voltage
$IC = f(V_{CE})$

At
$D = \text{single pulse}$
$Th = 80 \degree \text{C}$
$V_{GE} = \pm 15 \text{ V}$
$T_j = T_{j\max} \degree \text{C}$

Figure 26
Gate voltage vs Gate charge
$V_{GE} = f(Q_g)$

At
$D = \text{single pulse}$
$I_{GREF} = 1\text{mA}, R_L = 15\Omega$

Figure 27
MOSFET transient thermal impedance as a function of pulse width
$Z_{thJH} = f(tp)$

At
$D = tp / T$
$R_{thJH} = 1.29 \text{ K/W}$
$IC = 18 \text{ A}$

MOSFET thermal model values
<table>
<thead>
<tr>
<th>$R (C/W)$</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>9.2E+00</td>
</tr>
<tr>
<td>0.27</td>
<td>1.3E+00</td>
</tr>
<tr>
<td>0.53</td>
<td>2.1E-01</td>
</tr>
<tr>
<td>0.27</td>
<td>4.0E-02</td>
</tr>
<tr>
<td>0.08</td>
<td>4.8E-03</td>
</tr>
<tr>
<td>0.05</td>
<td>4.7E-04</td>
</tr>
</tbody>
</table>
Boost

Figure 1
Typical output characteristics
$I_c = f(V_{CE})$

![IGBT Figure 1](image1)

- $t_p = 250 \, \mu s$
- $T_j = 25 \, ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_c = f(V_{CE})$

![IGBT Figure 2](image2)

- $t_p = 250 \, \mu s$
- $T_j = 125 \, ^\circ C$
- V_{CE} from 6 V to 16 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_c = f(V_{GE})$

![IGBT Figure 3](image3)

- $t_p = 250 \, \mu s$
- $T_j = T_{j\text{max}} - 25 \, ^\circ C$
- V_{CE} = 10 V

Figure 4
Typical diode forward current as a function of forward voltage
$IF = f(V_F)$

![FRED Figure 4](image4)

- $t_p = 250 \, \mu s$
- $T_j = T_{j\text{max}} - 25 \, ^\circ C$
- V_F from 0 V to 100 V in steps of 1 V
Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω
- \(R_{goff} = 8 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_g) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(I_c = 40 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_g) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(I_c = 40 \) A
Figure 9 IGBT
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_j = 125 \ ^\circ \text{C} \)
- \(V_{CE} = 350 \ \text{V} \)
- \(V_{GE} = 15 \ \text{V} \)
- \(R_{gon} = 8 \ \Omega \)
- \(R_{goff} = 8 \ \Omega \)

Figure 10 IGBT
Typical switching times as a function of gate resistor
\(t = f(R_G) \)

With an inductive load at
- \(T_j = 125 \ ^\circ \text{C} \)
- \(V_{CE} = 350 \ \text{V} \)
- \(V_{GE} = 15 \ \text{V} \)
- \(I_C = 40 \ \text{A} \)

Figure 11 FRED
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
- \(T_j = 25/125 \ ^\circ \text{C} \)
- \(V_{CE} = 350 \ \text{V} \)
- \(V_{GE} = 15 \ \text{V} \)
- \(R_{gon} = 8 \ \Omega \)

Figure 12 FRED
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
- \(T_j = 25/125 \ ^\circ \text{C} \)
- \(V_{BE} = 350 \ \text{V} \)
- \(I_C = 40 \ \text{A} \)
- \(V_{GE} = 15 \ \text{V} \)
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 8 \, \Omega \]

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 8 \, \Omega \]
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = 15 \text{ V} \)
- \(I_F = 40 \text{ A} \)
- \(R_{gon} = 8 \text{ \Omega} \)

IGBT transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 1.11 \text{ K/W} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R \text{ (C/W)})</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>9.9E+00</td>
</tr>
<tr>
<td>0.22</td>
<td>1.2E+00</td>
</tr>
<tr>
<td>0.59</td>
<td>1.4E-01</td>
</tr>
<tr>
<td>0.17</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>0.03</td>
<td>2.7E-03</td>
</tr>
<tr>
<td>0.04</td>
<td>2.7E-04</td>
</tr>
</tbody>
</table>

FRED transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 2.04 \text{ K/W} \)

FRED thermal model values

<table>
<thead>
<tr>
<th>(R \text{ (C/W)})</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>9.8E+00</td>
</tr>
<tr>
<td>0.21</td>
<td>1.0E+00</td>
</tr>
<tr>
<td>1.12</td>
<td>1.5E-01</td>
</tr>
<tr>
<td>0.42</td>
<td>3.7E-02</td>
</tr>
<tr>
<td>0.17</td>
<td>4.4E-03</td>
</tr>
<tr>
<td>0.08</td>
<td>6.1E-04</td>
</tr>
</tbody>
</table>
Boost

Figure 21
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]
Figure 25: Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
\[T_p = 250 \mu s \]

Figure 26: Diode transient thermal impedance as a function of pulse width
\[Z_{th, JH} = f(T_p) \]

At
\[D = \frac{T_p}{T}, R_{th, JH} = 4.36 \text{ K/W} \]

Figure 27: Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_{th}) \]

At
\[T_j = 150 ^\circ C \]

Figure 28: Forward current as a function of heatsink temperature
\[I_F = f(T_{th}) \]

At
\[T_j = 150 ^\circ C \]
Thermistor

Figure 1
Typical NTC characteristic as a function of temperature

Figure 2
Typical NTC resistance values

\[R(T) = R_{25} \cdot e^{\left(\frac{1}{T_{25}} \left(\frac{1}{T} - \frac{1}{T_{25}} \right) \right)} \] \[[\Omega] \]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R_\text{min} [Ω]</th>
<th>R_max [Ω]</th>
<th>ΔR/R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>1458070.6</td>
<td>1060249.3</td>
<td>26.7</td>
</tr>
<tr>
<td>0</td>
<td>71804.2</td>
<td>59724.4</td>
<td>16.8</td>
</tr>
<tr>
<td>10</td>
<td>43790.4</td>
<td>37094.4</td>
<td>15.3</td>
</tr>
<tr>
<td>20</td>
<td>27484.6</td>
<td>23684.6</td>
<td>13.8</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
<td>19109.3</td>
<td>13.1</td>
</tr>
<tr>
<td>30</td>
<td>17723.3</td>
<td>15512.2</td>
<td>12.5</td>
</tr>
<tr>
<td>40</td>
<td>11723.0</td>
<td>10220.9</td>
<td>11.5</td>
</tr>
<tr>
<td>60</td>
<td>5487.9</td>
<td>4880.6</td>
<td>8.9</td>
</tr>
<tr>
<td>70</td>
<td>3848.6</td>
<td>3546</td>
<td>7.9</td>
</tr>
<tr>
<td>80</td>
<td>2762.7</td>
<td>2598.2</td>
<td>6.9</td>
</tr>
<tr>
<td>90</td>
<td>2068.9</td>
<td>1889.7</td>
<td>5.9</td>
</tr>
<tr>
<td>100</td>
<td>1486.1</td>
<td>1411.8</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>400.2</td>
<td>364.8</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Copyright by Vincotech
Switching Definitions BUCK MOSFET

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{on,IGBT}$</td>
<td>8 Ω</td>
</tr>
<tr>
<td>$R_{on,MOSFET}$</td>
<td>0 Ω</td>
</tr>
<tr>
<td>$R_{off,IGBT}$</td>
<td>8 Ω</td>
</tr>
<tr>
<td>$R_{off,MOSFET}$</td>
<td>47 Ω</td>
</tr>
</tbody>
</table>

Figure 1: Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{off}, t_{on}

t_{off} = integrating time for E_{off}

t_{on} = integrating time for E_{on}

V_G (0%) = -15 V
V_G (100%) = 15 V
V_C (100%) = 350 V
I_C (100%) = 40 A
t_{off} = 0.23 μs
t_{on} = 0.24 μs

Figure 2: Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{on}, t_{off}

t_{on} = integrating time for E_{on}

t_{off} = integrating time for E_{off}

V_G (0%) = -15 V
V_G (100%) = 15 V
V_C (100%) = 350 V
I_C (100%) = 40 A
t_{on} = 0.13 μs
t_{off} = 0.16 μs

Figure 3: Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{f}

t_{f} = fitted

V_C (100%) = 350 V
I_C (100%) = 40 A
t_{f} = 0.00 μs

Figure 4: Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{r}

t_{r} = fitted

V_C (100%) = 350 V
I_C (100%) = 40 A
t_{r} = 0.01 μs
Switching Definitions BUCK MOSFET

Figure 5 Output inverter IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

$P_{off}(100\%) = 13.94$ kW
$E_{off}(100\%) = 0.20$ mJ
$t_{Eoff} = 0.24$ μs

Figure 6 Output inverter IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

$P_{on}(100\%) = 13.94$ kW
$E_{on}(100\%) = 0.33$ mJ
$t_{Eon} = 0.16$ μs

Figure 7 Output inverter IGBT
Turn-off Switching Waveforms & definition of t_{r}

$V_d(100\%) = 350$ V
$I_d(100\%) = 40$ A
$t_{r_{10%}} = 4.1$ time (us)
$t_{r_{90%}} = 4.12$ time (us)
$t_{r_{100%}} = 4.14$ time (us)

Figure 8 Output inverter FRED
Turn-on Switching Waveforms & definition of t_{Qr}
(t_{Qrr} = integrating time for Q_r)

$I_r(100\%) = 40$ A
$Q_r(100\%) = 1.09$ μC
$t_{Qr} = 0.04$ μs
Switching Definitions BUCK MOSFET

Figure 9
Output inverter FRED

Turn-on Switching Waveforms & definition of t_{Erec}

t_{Erec} (integrating time for E_{rec})

P_{rec} (100%) = 13.94 kW

E_{rec} (100%) = 0.16 mJ

t_{Erec} = 0.04 μs

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit

Cg is included in the module
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FZ06NPA070FP01-P969F10</td>
<td>P969F10</td>
<td>P969F10</td>
</tr>
</tbody>
</table>

Outline

Pinout
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.