flowNPC0 600V/30A

Features
- Neutral-point-Clamped inverter
- Clip-In PCB mounting
- Low Inductance Layout

Target Applications
- UPS and Solar

Types
- 10-FZ06NIA030SA-P924F33

Maximum Ratings

Tjunction = 25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>VCES</td>
<td>Tj=25°C, Tc=80°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>Ic</td>
<td>Tj=Tmax, Tc=80°C</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>Ipulse</td>
<td>Ic limited by Tjmax</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>Ptot</td>
<td>Tj=Tmax, Tc=80°C</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>VGE</td>
<td>Tj=25°C, VGE=15V</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>tsc</td>
<td>Tj≤150°C, VCE=15V</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>Tj≤150°C, VCE=VCES</td>
<td></td>
<td>60</td>
<td>A</td>
</tr>
</tbody>
</table>

Buck FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>Vmax</td>
<td>Tj=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>If</td>
<td>Tj=Tmax, Tc=80°C</td>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>Ifrm</td>
<td>If limited by Tjmax</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>Ptot</td>
<td>Tj=Tmax, Tc=80°C</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{max}$</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_e=80°C$</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80°C$</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CPUL}</td>
<td>I_p limited by T_{max}</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_e=80°C$</td>
<td>85</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80°C$</td>
<td>85</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_j\leq150°C$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GE}=15V$</td>
<td>360</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$T_j\leq150°C$</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} \leq V_{CES}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buck and Boost Inverse FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{max}$</td>
<td>26</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_e=80°C$</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PRM}</td>
<td>I_p limited by T_{max}</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_e=80°C$</td>
<td>67</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_j</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+($T_{max} - 25$)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_i</td>
<td>$I=2s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V<sub>CES</sub></td>
<td>V<sub>CES=V<sub>CE</sub></sub></td>
<td>0,00043</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I<sub>CES</sub></td>
<td>V<sub>CES=V<sub>CE</sub></sub></td>
<td>16, 30</td>
<td>μA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I<sub>GES</sub></td>
<td>V<sub>CES=V<sub>CE</sub></sub></td>
<td>20, 0</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R<sub>off</sub></td>
<td>none</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t<sub>on</sub></td>
<td>Rgoff=16 Ω</td>
<td>1,75, 2,05</td>
<td>s</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t<sub>off</sub></td>
<td>Rgon=16 Ω</td>
<td>1,75, 2,05</td>
<td>s</td>
</tr>
<tr>
<td>Fall time</td>
<td>t<sub>f</sub></td>
<td>Rgoff=16 Ω</td>
<td>1,75, 2,05</td>
<td>s</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E<sub>on</sub></td>
<td>Rgon=16 Ω</td>
<td>0,47, 0,62</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E<sub>off</sub></td>
<td>Rgoff=16 Ω</td>
<td>0,80, 1,02</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub>in</sub></td>
<td>RinMHz</td>
<td>1630</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C<sub>out</sub></td>
<td>RinMHz</td>
<td>108</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub>rss</sub></td>
<td>RinMHz</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q<sub>gate</sub></td>
<td>±15</td>
<td>480, 30</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R<sub>thJH</sub></td>
<td>Thermal grease thickness=500μm</td>
<td>1,69</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Buck FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V<sub>D</sub></td>
<td>±15</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I<sub>RM</sub></td>
<td>Rgoff=16 Ω</td>
<td>1,75, 2,05</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t<sub>p</sub></td>
<td>Rgon=16 Ω</td>
<td>1,75, 2,05</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q<sub>rec</sub></td>
<td>Rgoff=16 Ω</td>
<td>1,75, 2,05</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>d<sub>rec</sub></td>
<td>Rgon=16 Ω</td>
<td>1,75, 2,05</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E<sub>rec</sub></td>
<td>Rgoff=16 Ω</td>
<td>1,75, 2,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R<sub>thJH</sub></td>
<td>Thermal grease thickness=500μm</td>
<td>2,15</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE(th)}</td>
<td>V_{GE}=V_{GE}</td>
<td>0,00043</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{C(sat)}</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{GES}</td>
<td>0</td>
<td>30</td>
<td>µA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>1</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{goff}</td>
<td>none</td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>177</td>
<td>18</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>30</td>
<td>105</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>0,45</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>0,81</td>
<td>1,04</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>1630</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gmax}</td>
<td></td>
<td>167</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness50um $\kappa = 1 \text{ W/mK}$</td>
<td>1,69</td>
<td>KW</td>
</tr>
</tbody>
</table>

Buck and Boost Inverse FWD

| Diode forward voltage | V_{F} | 20 | 15 | V |
| Thermal resistance chip to heatsink per chip | R_{thJH}| Thermal grease thickness50um $\kappa = 1 \text{ W/mK}$ | 2,15 | KW |

Thermistor

Rated resistance	R	T=25°C	22000	Ω
Deviation of R100	ΔR/R	R100=1486 Ω	5	%
Power dissipation	P	T=25°C	200	mW
Power dissipation constant	P	T=25°C	2	mW/K
B-value	B_{(25)}	Tol. ±3%	3950	K
B-value	B_{(25)}	Tol. ±3%	3966	K
Vincotech NTC Reference		T=25°C	B	
Buck

Figure 1

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

Figure 4

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(T_j = T_{j\max} - 25 \ ^\circ C \)
- \(V_{CE} = 10 \ V \)
Figure 5
IGBT
Typical switching energy losses as a function of collector current
$E = f(I_C)$

![Figure 5](image)

With an inductive load at
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 16 \, \Omega$
$R_{goff} = 16 \, \Omega$

Figure 6
IGBT
Typical switching energy losses as a function of gate resistor
$E = f(R_G)$

![Figure 6](image)

With an inductive load at
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$I_C = 31 \, A$

Figure 7
FWD
Typical reverse recovery energy loss as a function of collector current
$E_{rec} = f(I_C)$

![Figure 7](image)

With an inductive load at
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 16 \, \Omega$

Figure 8
FWD
Typical reverse recovery energy loss as a function of gate resistor
$E_{rec} = f(R_G)$

![Figure 8](image)

With an inductive load at
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$I_C = 31 \, A$
Buck

Figure 9
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω
- \(R_{goff} = 16 \) Ω

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_J = 125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 31 \) A

Figure 11
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_J = 25/125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_J = 25/125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(I_F = 31 \) A
- \(V_{GE} = \pm 15 \) V
Buck

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 16 \, \Omega \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{rrm} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{rrm} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 31 \, A \]
\[V_{GE} = \pm 15 \, V \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_F = 31 \, A \)
- \(R_{gon} = 16 \, \Omega \)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(I_F = 31 \, A \)
- \(V_{GE} = \pm 15 \, V \)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\(Z_{th,JH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{th,SH} = 1.69 \, KW \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>7.4E+00</td>
</tr>
<tr>
<td>0.23</td>
<td>1.0E+00</td>
</tr>
<tr>
<td>0.62</td>
<td>1.4E-01</td>
</tr>
<tr>
<td>0.50</td>
<td>2.6E-02</td>
</tr>
<tr>
<td>0.18</td>
<td>4.3E-03</td>
</tr>
<tr>
<td>0.11</td>
<td>3.2E-04</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{th,JH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{th,SH} = 2.15 \, KW \)

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>6.8E+00</td>
</tr>
<tr>
<td>0.23</td>
<td>1.0E+00</td>
</tr>
<tr>
<td>0.72</td>
<td>1.3E-01</td>
</tr>
<tr>
<td>0.63</td>
<td>3.2E-02</td>
</tr>
<tr>
<td>0.32</td>
<td>5.4E-03</td>
</tr>
<tr>
<td>0.19</td>
<td>4.3E-04</td>
</tr>
</tbody>
</table>
Buck

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

\[T_j = 175 \, ^\circ\text{C} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GE} = 15 \, \text{V} \]
Buck & Boost

Figure 25
Turn on safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

At
\[T_J = T_{J \text{max}} \degree C \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

At
\[I_C = 31 \text{ A} \]

Copyright © Vincotech
Typical output characteristics

- $I_C = f(V_{CE})$

At
- $t_p = 250 \ \mu s$
- $T_j = 25 \ \degree C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Boost

Typical transfer characteristics

- $I_C = f(V_{CE})$

At
- $t_p = 250 \ \mu s$
- $T_j = 125 \ \degree C$
- V_{CE} from 7 V to 17 V in steps of 1 V
Figure 4

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)
- \(R_{goff} = 16 \, \Omega \)

Figure 5

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_e = 29 \, A \)

Figure 6

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)

Figure 7

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_e = 29 \, A \)
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 29 \, A \)

Typical reverse recovery time as a function of collector current

\[t_r = f(I_C) \]

At

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)
Typical reverse recovery charge as a function of collector current

$$Q_{rr} = f(I_C)$$

At

- $T_J = 25/125 \, ^\circ C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 16 \, \Omega$

Typical reverse recovery charge as a function of IGBT turn on gate resistor

$$Q_{rr} = f(R_{gon})$$

At

- $T_J = 25/125 \, ^\circ C$
- $V_{BE} = 350 \, V$
- $I_F = 29 \, A$
- $V_{GE} = \pm 15 \, V$

Typical reverse recovery current as a function of collector current

$$I_{CRM} = f(I_C)$$

At

- $T_J = 25/125 \, ^\circ C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 16 \, \Omega$

Typical reverse recovery current as a function of IGBT turn on gate resistor

$$I_{CRM} = f(R_{gon})$$

At

- $T_J = 25/125 \, ^\circ C$
- $V_{BE} = 350 \, V$
- $I_F = 29 \, A$
- $V_{GE} = \pm 15 \, V$
Boost

Figure 16
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 29 \) A
- \(R_{gon} = 16 \) Ω

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 29 \) A
- \(V_{GE} = \pm 15 \) V

Figure 18
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = \frac{t_p}{T} \)
- \(R_{th,JH} = 1.69 \) K/W

R (C/W)
- 0.05: 7.4E+00
- 0.23: 1.0E+00
- 0.62: 1.5E-01
- 0.50: 2.6E-02
- 0.18: 4.3E-03
- 0.11: 3.2E-04
Boost

Figure 19
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_{\text{h}}) \]

At
\[T_j = 175 \degree C \]

Figure 20
Collector current as a function of heatsink temperature

\[I_C = f(T_{\text{h}}) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \text{ V} \]
Buck and Boost Inverse Diode

Figure 1 Buck and Boost Inverse Diode

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

\[V_F = T_{pul-25°C} \]

\[T_J = 25°C \]

At

\[t_p = 350 \ \mu s \]

Figure 2 Buck and Boost Inverse Diode

Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{thJH} = 2.15 \ \text{K/W} \]

Figure 3 Buck and Boost Inverse Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_J = 175°C \]

Figure 4 Buck and Boost Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_J = 175°C \]
Thermistor

Figure 1
Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]

Figure 2
Typical NTC resistance values

\[R(T) = R_{25} \cdot e^{\left(\frac{B_{25\Omega}}{T} - \frac{1}{T_{25}} \right)} \] [\Omega]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R (Ω)</th>
<th>T (°C)</th>
<th>R (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55</td>
<td>36066777</td>
<td>30</td>
<td>17935</td>
</tr>
<tr>
<td>-50</td>
<td>1992978</td>
<td>40</td>
<td>115274</td>
</tr>
<tr>
<td>-45</td>
<td>1346472</td>
<td>50</td>
<td>7796</td>
</tr>
<tr>
<td>-40</td>
<td>934076</td>
<td>60</td>
<td>4451</td>
</tr>
<tr>
<td>-35</td>
<td>645112</td>
<td>70</td>
<td>2354</td>
</tr>
<tr>
<td>-30</td>
<td>459784</td>
<td>80</td>
<td>1250</td>
</tr>
<tr>
<td>-25</td>
<td>327995</td>
<td>90</td>
<td>679</td>
</tr>
<tr>
<td>-20</td>
<td>238577</td>
<td>100</td>
<td>357</td>
</tr>
<tr>
<td>-15</td>
<td>172705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>130914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>98818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75683</td>
<td>10</td>
<td>1289</td>
</tr>
<tr>
<td>5</td>
<td>57685</td>
<td>20</td>
<td>985</td>
</tr>
<tr>
<td>10</td>
<td>44764</td>
<td>30</td>
<td>861</td>
</tr>
<tr>
<td>15</td>
<td>35031</td>
<td></td>
<td>759</td>
</tr>
<tr>
<td>20</td>
<td>22000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>13535</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright by Vincotech
Switching Definitions BUCK IGBT

General conditions

\[
\begin{align*}
T_J &= 125 \, ^\circ C \\
R_{on} &= 16 \, \Omega \\
R_{off} &= 16 \, \Omega
\end{align*}
\]

Figure 1
Output inverter IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{off}}, t_{\text{onoff}} \)
\((t_{\text{off}} = \text{integrating time for } E_{\text{off}}) \)

- \(V_{GE} \) (%)
- \(V_C \) (%)
- IC (%)
- \(t_{\text{off}} \)
- \(t_{\text{onoff}} \)

\begin{align*}
V_{GE} (0\%) &= -15 \, V \\
V_{CE} (0\%) &= -15 \, V \\
V_{CE} (100\%) &= 15 \, V \\
V_{CE} (100\%) &= 15 \, V \\
I_C (100\%) &= 31 \, A \\
I_C (100\%) &= 31 \, A \\
t_{\text{off}} &= 0.17 \, \mu s \\
t_{\text{onoff}} &= 0.41 \, \mu s
\end{align*}

Figure 2
Output inverter IGBT

Turn-on Switching Waveforms & definition of \(t_{\text{on}}, t_{\text{eon}} \)
\((t_{\text{on}} = \text{integrating time for } E_{\text{on}}) \)

- \(V_{GE} \) (%)
- \(V_C \) (%)
- IC (%)
- \(t_{\text{on}} \)
- \(t_{\text{eon}} \)

\begin{align*}
V_{GE} (0\%) &= -15 \, V \\
V_{GE} (100\%) &= 15 \, V \\
V_{CE} (100\%) &= 350 \, V \\
V_{CE} (100\%) &= 350 \, V \\
I_C (100\%) &= 31 \, A \\
I_C (100\%) &= 31 \, A \\
t_{\text{on}} &= 0.10 \, \mu s \\
t_{\text{eon}} &= 0.21 \, \mu s
\end{align*}

Figure 3
Output inverter IGBT

Turn-off Switching Waveforms & definition of \(t_f \)

- \(V_C \) (%)
- IC (%)
- \(t_f \)

\begin{align*}
V_C (100\%) &= 350 \, V \\
I_C (100\%) &= 31 \, A \\
t_f &= 0.11 \, \mu s
\end{align*}

Figure 4
Output inverter IGBT

Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C \) (%)
- IC (%)
- \(t_r \)

\begin{align*}
V_C (100\%) &= 350 \, V \\
I_C (100\%) &= 31 \, A \\
t_r &= 0.02 \, \mu s
\end{align*}
Switching Definitions BUCK IGBT

Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

Figure 7
Output inverter FWD
Gate voltage vs Gate charge (measured)

Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t_{tr}

P_{off}(100%) = 10.70 kW
E_{off}(100%) = 1.02 mJ
t_{Eoff} = 0.41 μs

P_{on}(100%) = 10.70 kW
E_{on}(100%) = 0.62 mJ
t_{Eon} = 0.21 μs

V_{GEloff} = -15 V
V_{GEfon} = 15 V
V_{d}(100%) = 350 V
I_{d}(100%) = 31 A
Q_{g} = 261.94 nC

V_{d}(100%) = 350 V
I_{d}(100%) = 31 A
t_{ir} = 0.18 μs
Switching Definitions BUCK IGBT

Figure 9 Output inverter FWD
Turn-on Switching Waveforms & definition of t_{Qr}
(t_{Qr} = integrating time for Q_r)

Id (100\%) = 31 A

$\text{Q_r (100\%) = 2.29 \mu C}$

$\text{t_{Qr} = 0.87 \mu s}$

Figure 10 Output inverter FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

$\text{P_{rec (100\%) = 10.70 kW}}$

$\text{E_{rec (100\%) = 0.55 mJ}}$

$\text{t_{Erec} = 0.67 \mu s}$

Measurement circuits

Figure 11 BUCK stage switching measurement circuit

Figure 12 BOOST stage switching measurement circuit

Copyright by Vincotech 22 Revision: 1
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard in flow0 12mm housing</td>
<td>10-FZ06NIA030SA-P924F33</td>
<td>P924F33</td>
<td>P924F33</td>
</tr>
</tbody>
</table>

Outline

Ordering Code and Marking - Outline - Pinout

Pin 1 X Y
1 1.6 0
2 20.8 0
3 22 0
4 16.2 0
5 11 0
6 2.8 0
7 0 0
8 0 7.1
9 0 9.9
10 0 12.7
11 11 15.5
12 11 22.8
13 2.6 22.8
14 4.4 22.8
15 15.2 22.8
16 22 22.8
17 30.8 22.8
18 30.6 22.8
19 14.6 14.6
20 20.6 8.2

Pinout

Copyright by Vincotech
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.