Vincotech

flow PFC 0 CD

Features
- High-efficient rectifier
- High-efficient IGBT H5 + Stealth 2 Diode
- Ultra-fast switching speed
- Integrated capacitors
- Thermistor

Target applications
- SMPS
- Welding

Types
- 10-FZ062TA050SM-P987D13

flow 0 12mm housing

Schematic

Maximum Ratings

$T_{j} = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{ces}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_{C}</td>
<td>$T_{j} = T_{jmax}$</td>
<td>43</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>limited by T_{jmax}</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_{j} = T_{jmax}$</td>
<td>84</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{ces}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_s</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>26</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{f\text{max}}$</td>
<td></td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>48</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>PFC Protection\ Current Transforme Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_s</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{f\text{max}}$</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Rectifier \ Shunt Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_s</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>$I_{f\text{max}}$</td>
<td>50 Hz Single Half Sine Wave $\tau_p = 10 , \text{ms}$ 50 Hz sine $T_j = 150^\circ\text{C}$</td>
<td>280</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>I^{2s}</td>
<td></td>
<td>390</td>
<td>A^2s</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$ $T_s = 80^\circ\text{C}$</td>
<td>59</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>DC Link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td></td>
<td>-55...+125</td>
<td>°C</td>
</tr>
<tr>
<td>PFC Shunt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max DC current</td>
<td>I_{MAX}</td>
<td>$T_c = 25 , ^\circ\text{C}$</td>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{ac}</td>
<td>$T_c = 105 , ^\circ\text{C}$</td>
<td>5</td>
<td>W</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td></td>
<td>-40...+$T_{jmax} - 25$</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>$V_{ isol }$</td>
<td>DC Voltage</td>
<td>$t_p = 2s$</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min. 12,7</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>9,42</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td></td>
<td></td>
<td></td>
<td>> 200</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE} = V_{GS}$</td>
<td>0,0005</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td></td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{CRES}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_g</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{ins}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_r</td>
<td></td>
<td>15</td>
<td>520</td>
</tr>
</tbody>
</table>

PFC Switch

Static

- **Gate-emitter threshold voltage**
 - $V_{GE(th)}$:
 - $V_{CE} = V_{GS}$:
 - Conditions: 0,0005, 25
 - Value: 3,3, 4, 4,7 V

- **Collector-emitter saturation voltage**
 - V_{CEsat}:
 - Conditions: 15, 50
 - Value: 25, 125
 - Value: 1,82, 2,00, 2,22 V

- **Collector-emitter cut-off current**
 - I_{CES}:
 - Conditions: 0, 650
 - Value: 25
 - Value: 40 µA

- **Gate-emitter leakage current**
 - I_{CRES}:
 - Conditions: 20, 0
 - Value: 25
 - Value: 120 nA

- **Internal gate resistance**
 - r_g:
 - Conditions: none
 - Value: none Ω

- **Input capacitance**
 - C_{ins}:
 - Conditions: f = 1 MHz
 - Value: 25
 - Value: 25
 - Value: 3000 pF

- **Output capacitance**
 - C_{oes}:
 - Conditions: 0, 25
 - Value: 25
 - Value: 50 µF

- **Reverse transfer capacitance**
 - C_{res}:
 - Conditions: none
 - Value: 11 nF

- **Gate charge**
 - Q_r:
 - Conditions: 15, 520
 - Value: 50
 - Value: 120 nC

Thermal

- **Thermal resistance junction to sink**
 - $R_{th(j-s)}$:
 - Value: 1,13 K/W

IGBT Switching

- **Turn-on delay time**
 - $t_{(on)}$:
 - Conditions: 25, 125
 - Value: 24 ns

- **Rise time**
 - t_r:
 - Conditions: 25, 125
 - Value: 11 ns

- **Turn-off delay time**
 - $t_{(off)}$:
 - Conditions: 25, 125
 - Value: 137 ns

- **Fall time**
 - t_f:
 - Conditions: 25, 125
 - Value: 154 ns

- **Turn-on energy (per pulse)**
 - E_{on}:
 - Conditions: $Q_{onmax} = 0,3 µC$
 - Conditions: $Q_{onmin} = 1 µC$
 - Value: 25, 125
 - Value: 0,561, 0,874 mWs

- **Turn-off energy (per pulse)**
 - E_{off}:
 - Conditions: $Q_{offmax} = 0,241 µC$
 - Conditions: $Q_{offmin} = 0,428 µC$
 - Value: 25, 125
 - Value: 0,241, 0,428 mWs
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGE [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGS [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCE [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ic [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFC Diode

Static
- **Forward voltage** V_F
 - Conditions: 30
 - Value: 25
 - Value: 25
 - Unit: [V]
- **Reverse leakage current** I_r
 - Conditions: 600
 - Value: 25
 - Value: 100
 - Unit: [µA]

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - Phase-change material
 - $\lambda = 3,4 \text{ W/mK}$
 - Value: 1,46
 - Unit: [K/W]

FWD Switching
- **Peak recovery current** I_{RRM}
 - Conditions: 15/0
 - Value: 25
 - Value: 25
 - Unit: [A]
- **Reverse recovery time** t_{rr}
 - Conditions: 0
 - Value: 25
 - Value: 25
 - Unit: [ns]
- **Recovered charge** Q_r
 - Conditions: 0
 - Value: 25
 - Value: 25
 - Unit: [µC]
- **Reverse recovered energy** E_{rec}
 - Conditions: 0
 - Value: 25
 - Value: 25
 - Unit: [mWs]
- **Peak rate of fall of recovery current** $(dI_{rf}/dt)_{max}$
 - Conditions: 0
 - Value: 25
 - Value: 25
 - Unit: [A/µs]

PFC Protection\ Current Transforme Protection Diode

Static
- **Forward voltage** V_F
 - Conditions: 10
 - Value: 25
 - Value: 25
 - Unit: [V]
- **Reverse leakage current** I_r
 - Conditions: 650
 - Value: 25
 - Value: 0,14
 - Unit: [µA]

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - Phase-change material
 - $\lambda = 3,4 \text{ W/mK}$
 - Value: 2,87
 - Unit: [K/W]

Rectifier \ Shunt Protection Diode

Static
- **Forward voltage** V_F
 - Conditions: 30
 - Value: 25
 - Value: 1,16
 - Value: 1,16
 - Unit: [V]
- **Reverse leakage current** I_r
 - Conditions: 1600
 - Value: 25
 - Value: 20
 - Unit: [µA]

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - Phase-change material
 - $\lambda = 3,4 \text{ W/mK}$
 - Value: 1,19
 - Unit: [K/W]

Copyright Vincotech 11 Mar. 2016 / Revision 1
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Link Capacitor</td>
<td></td>
<td>$ V_{GE} \ [V]$ $ V_{GS} \ [V]$ $ V_{CE} \ [V]$ $ T_i \ [^\circ C]$</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>PFC Shunt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>R</td>
<td></td>
<td>6,8</td>
<td>mΩ</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>ε_t</td>
<td>20 - 60</td>
<td>50</td>
<td>ppm/K</td>
</tr>
<tr>
<td>Internal heat resistance</td>
<td>R_{thi}</td>
<td></td>
<td>13</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Deviation of R100</td>
<td>Δ_{R100}</td>
<td>R100 = 1486 Ω</td>
<td>100</td>
<td>-12</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>25</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>25</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$R_{25/100}$ Tol. ±3%</td>
<td>25</td>
<td>3950</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>$R_{25/100}$ Tol. ±3%</td>
<td>25</td>
<td>3998</td>
<td>K</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
PFC Switch Characteristics

Typical output characteristics IGBT

\[I_C = f(V_{CE}) \]

Typical output characteristics IGBT

\[I_C = f(V_{CE}) \]

Typical transfer characteristics IGBT

\[I_C = f(V_{GE}) \]

Transient Thermal Impedance as function of Pulse duration IGBT

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 1,13 \text{ K/W} \]

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(r) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,12E-02</td>
<td>8,15E+00</td>
</tr>
<tr>
<td>1,29E-01</td>
<td>6,00E-01</td>
</tr>
<tr>
<td>4,31E-01</td>
<td>9,13E-02</td>
</tr>
<tr>
<td>3,15E-01</td>
<td>2,59E-02</td>
</tr>
<tr>
<td>1,31E-01</td>
<td>5,80E-03</td>
</tr>
<tr>
<td>5,02E-02</td>
<td>8,53E-04</td>
</tr>
</tbody>
</table>
PFC Switch Characteristics

Gate voltage vs Gate charge

\[V_{GE} = f(Q_G) \]

Safe operating area

\[I_C = f(V_{CE}) \]

At

\[I_C = 50 \text{ A} \]

At

\[D = \text{single pulse} \]

\[T_s = 80 \degree C \]

\[V_{CE} = \pm 15 \text{ V} \]

\[T_j = T_{jmax} \degree C \]
PFC Diode Characteristics

Typical forward characteristics

$I_F = f(V_F)$

![Graph showing typical forward characteristics](image)

- $t_p = 250 \mu s$
- $T_j = 25^\circ C$
- $D = 0.5$

Transient thermal impedance as a function of pulse width

$Z_{th(j-s)} = f(t_p)$

![Graph showing transient thermal impedance](image)

- $D = 0.5$
- $R_{th(j-s)} = 1.46 \text{ K/W}$

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.840E-02</td>
<td>2.7070E+00</td>
</tr>
<tr>
<td>1.8520E-01</td>
<td>3.2980E-01</td>
</tr>
<tr>
<td>7.7650E-01</td>
<td>6.8840E-02</td>
</tr>
<tr>
<td>2.2980E-01</td>
<td>1.9350E-02</td>
</tr>
<tr>
<td>1.1460E-01</td>
<td>3.4610E-03</td>
</tr>
<tr>
<td>8.1930E-02</td>
<td>7.0190E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
PFC Protection \ Current Transformer Protection Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

Prot. Diode

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

Prot. Diode

\[t_p = 250 \mu s \]

\[T_j: 25 \ ^\circ C \]

\[R_{th(j-s)} = 2.87 \ K/W \]

\[125 \ ^\circ C \]

\[150 \ ^\circ C \]

Prot. Diode thermal model values

<table>
<thead>
<tr>
<th>(R (K/W))</th>
<th>(\tau (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.529E-02</td>
<td>3.939E+00</td>
</tr>
<tr>
<td>1.476E-01</td>
<td>4.483E-01</td>
</tr>
<tr>
<td>1.313E+00</td>
<td>5.964E-02</td>
</tr>
<tr>
<td>7.318E-01</td>
<td>1.361E-02</td>
</tr>
<tr>
<td>4.044E-01</td>
<td>2.794E-03</td>
</tr>
<tr>
<td>2.106E-01</td>
<td>5.372E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Rectifier \ Shunt Protection Diode Characteristics

Typical forward characteristics

$I_F = f(V_F)$

<table>
<thead>
<tr>
<th>V_F (V)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F (A)</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

$\tau_p = 250 \, \mu s$

$T_J: 25 \, ^\circ C$

$R_{th(j-s)} = 1.19 \, K/W$

Transient thermal impedance as a function of pulse width

$D = \frac{t_p}{T}$

$R_{th(j-s)} = 1.19 \, K/W$

Diode thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.27E-02</td>
<td>9.47E-00</td>
</tr>
<tr>
<td>1.25E-01</td>
<td>7.56E-01</td>
</tr>
<tr>
<td>7.11E-01</td>
<td>1.23E-01</td>
</tr>
<tr>
<td>2.20E-01</td>
<td>3.75E-02</td>
</tr>
<tr>
<td>6.56E-02</td>
<td>5.63E-03</td>
</tr>
<tr>
<td>3.68E-02</td>
<td>8.27E-04</td>
</tr>
</tbody>
</table>

Thermistor Characteristics

Thermistor typical temperature characteristic

$R = f(T)$

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (Ω)</td>
<td>25000</td>
<td>15000</td>
<td>10000</td>
<td>5000</td>
<td>0</td>
</tr>
</tbody>
</table>

Typical NTC characteristic as a function of temperature

$R = f(T)$

Copyright Vincotech
PFC Switching Characteristics

Figure 1. Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at 25 °C

- \(V_{in} = 400 \) V
- \(T_{j} = 125 \) °C
- \(R_{on} = 8 \) Ω
- \(I_c = 50 \) A

Figure 2. Typical switching energy losses as a function of gate resistor

\[E = f(r_g) \]

With an inductive load at 25 °C

- \(V_{in} = 400 \) V
- \(V_{in} = 15/0 \) V
- \(I_i = 50 \) A

Figure 3. Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at 25 °C

- \(V_{in} = 400 \) V
- \(V_{in} = 15/0 \) V
- \(R_{on} = 8 \) Ω

Figure 4. Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(r_g) \]

With an inductive load at 25 °C

- \(V_{in} = 400 \) V
- \(V_{in} = 15/0 \) V
- \(I_i = 50 \) A
PFC Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 ^\circ C \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 15/0 \text{ V} \)
- \(R_{gon} = 8 \Omega \)
- \(I_C = 50 \text{ A} \)

Figure 6. IGBT
Typical switching times as a function of gate resistor
\[t = f(r_g) \]

With an inductive load at
- \(T_j = 125 ^\circ C \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 15/0 \text{ V} \)
- \(R_{gon} = 8 \Omega \)
- \(I_C = 50 \text{ A} \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 15/0 \text{ V} \)
- \(R_{pm} = 8 \Omega \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 15/0 \text{ V} \)
- \(I_C = 50 \text{ A} \)
PFC Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
\[V_{cc}= 400 \text{ V} \]
\[V_{gs}= 15/0 \text{ V} \]
\[R_{gs}= 8 \Omega \]

25 \(^\circ\text{C}\)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

At
\[V_{cc}= 400 \text{ V} \]
\[V_{gs}= 15/0 \text{ V} \]
\[R_{gs}= 8 \Omega \]

25 \(^\circ\text{C}\)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
\[V_{cc}= 400 \text{ V} \]
\[V_{gs}= 15/0 \text{ V} \]
\[R_{gs}= 8 \Omega \]

25 \(^\circ\text{C}\)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
\[V_{cc}= 400 \text{ V} \]
\[V_{gs}= 15/0 \text{ V} \]
\[R_{gs}= 8 \Omega \]
\[I_C= 50 \text{ A} \]

25 \(^\circ\text{C}\)
PFC Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rr}}{dt} = f(I_{C}) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 15/0 \) V
- \(T_j = 125 ^{\circ}C \)
- \(R_{gon} = 8 \) Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rr}}{dt} = f(R_{g}) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 15/0 \) V
- \(T_j = 125 ^{\circ}C \)
- \(I_C = 50 \) A

Figure 15. IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]
PFC Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>$125 , ^\circ C$</td>
</tr>
<tr>
<td>R_{GS}</td>
<td>$8 , \Omega$</td>
</tr>
<tr>
<td>R_{DS}</td>
<td>$8 , \Omega$</td>
</tr>
</tbody>
</table>

Figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for $Eoff$)

Figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for Eon)

Figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

Figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r
PFC Switching Definitions

Figure 5. IGBT

Turn-off Switching Waveforms & definition of $t_{E_{off}}$

- $V_{GE(100\%)} = 20.05$ kW
- $E_{off(100\%)} = 0.43$ mJ
- $t_{E_{off}} = 0.19$ µs

Figure 6. IGBT

Turn-on Switching Waveforms & definition of $t_{E_{on}}$

- $P_{on(100\%)} = 20.05$ kW
- $E_{on(100\%)} = 0.87$ mJ
- $t_{E_{on}} = 0.13$ µs

Figure 7. FWD

Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d(100\%)} = 400$ V
- $I_{d(100\%)} = 50$ A
- $I_{fitted} = -51$ A
- $t_{rr} = 0.035$ µs

Copyright Vincotech
PFC Switching Definitions

Figure 8. FWD
Turn-on Switching Waveforms & definition of $I_{Q_{rr}}$, integrating time for Q_{rr}

$\begin{align*}
I_d(100\%) &= 50 \text{ A} \\
Q_{rr}(100\%) &= 1.04 \text{ µC} \\
t_{Q_{rr}} &= 0.07 \text{ µs}
\end{align*}$

Figure 9. FWD
Turn-on Switching Waveforms & definition of E_{rec}, integrating time for E_{rec}

$\begin{align*}
P_{rec}(100\%) &= 20.05 \text{ kW} \\
E_{rec}(100\%) &= 0.16 \text{ mJ} \\
t_{E_{rec}} &= 0.07 \text{ µs}
\end{align*}$
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste with Solder pins 12mm housing</td>
<td>10-FZ062TA050SM-P987D13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & Vinco</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYY</td>
<td>UN</td>
<td>UL</td>
<td>LLLLL</td>
<td>SSSS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datamatrix</th>
<th>Type&Ver</th>
<th>Lot number</th>
<th>Serial</th>
<th>Date code</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYY</td>
<td>TTTTTTVV</td>
<td>LLLLL</td>
<td>SSSS</td>
<td>WWYY</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,5</td>
<td>0</td>
<td>Therm1</td>
</tr>
<tr>
<td>2</td>
<td>33,5</td>
<td>2,8</td>
<td>Therm2</td>
</tr>
<tr>
<td>3</td>
<td>29,5</td>
<td>2,8</td>
<td>S1sh1</td>
</tr>
<tr>
<td>4</td>
<td>29,5</td>
<td>0</td>
<td>S2sh1</td>
</tr>
<tr>
<td>5</td>
<td>26,7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>6</td>
<td>23,9</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>7</td>
<td>14,85</td>
<td>0</td>
<td>ST1</td>
</tr>
<tr>
<td>8</td>
<td>14,05</td>
<td>13,35</td>
<td>ST2</td>
</tr>
<tr>
<td>9</td>
<td>12,05</td>
<td>0</td>
<td>ST1</td>
</tr>
<tr>
<td>10</td>
<td>9,5</td>
<td>12,05</td>
<td>PFC1-</td>
</tr>
<tr>
<td>11</td>
<td>6,7</td>
<td>12,05</td>
<td>PFC2-</td>
</tr>
<tr>
<td>12</td>
<td>3,9</td>
<td>0</td>
<td>ST2</td>
</tr>
<tr>
<td>13</td>
<td>1,1</td>
<td>0</td>
<td>G27</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>22,7</td>
<td>PFC2</td>
</tr>
<tr>
<td>15</td>
<td>7,1</td>
<td>22,7</td>
<td>PFC+</td>
</tr>
<tr>
<td>16</td>
<td>7,1</td>
<td>20,2</td>
<td>PFC+</td>
</tr>
<tr>
<td>17</td>
<td>14,2</td>
<td>22,7</td>
<td>PFC1</td>
</tr>
<tr>
<td>18</td>
<td>20,7</td>
<td>22,7</td>
<td>G34</td>
</tr>
<tr>
<td>19</td>
<td>23,5</td>
<td>22,7</td>
<td>DC+</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>22,7</td>
<td>DC+</td>
</tr>
<tr>
<td>21</td>
<td>28,8</td>
<td>22,7</td>
<td>G32</td>
</tr>
<tr>
<td>22</td>
<td>33,5</td>
<td>18,55</td>
<td>ACin1</td>
</tr>
<tr>
<td>23</td>
<td>33,5</td>
<td>16,05</td>
<td>ACin1</td>
</tr>
<tr>
<td>24</td>
<td>33,5</td>
<td>8,7</td>
<td>ACin2</td>
</tr>
<tr>
<td>25</td>
<td>31</td>
<td>8,7</td>
<td>ACin2</td>
</tr>
</tbody>
</table>

Dimension of corona pin is only offset without tolerance

Tolerance of 40 pins: ±5µm at the end of pins

Copyright Vincotech

11 Mar. 2016 / Revision 1
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T25, T27</td>
<td>IGBT</td>
<td>650 V</td>
<td>50 A</td>
<td>PFC Switch</td>
<td></td>
</tr>
<tr>
<td>D25, D27</td>
<td>FWD</td>
<td>600 V</td>
<td>30 A</td>
<td>PFC Diode</td>
<td></td>
</tr>
<tr>
<td>D45, D47</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>PFC Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D31, D32, D33, D34</td>
<td>Rectifier</td>
<td>1600 V</td>
<td>50 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>D48</td>
<td>FWD</td>
<td>1600 V</td>
<td>50 A</td>
<td>Shunt Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D26, D28</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>Current Transformer Protection Diode</td>
<td></td>
</tr>
<tr>
<td>SH1</td>
<td>Shunt</td>
<td></td>
<td></td>
<td>Shunt Resistor</td>
<td></td>
</tr>
<tr>
<td>C25, C27</td>
<td>Capacitor</td>
<td>1000 V</td>
<td></td>
<td>DC Link Capacitance</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.