10-FY07ZAA050SM-L514B28 datasheet

Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td></td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>50 Hz Single Half Sine Wave 6~ms $T_j = 150 , ^\circ C$</td>
<td>490</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>I_{2t}</td>
<td>$t_p = 10 , \text{ms}$</td>
<td>1200</td>
<td>A2</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$ $T_i = 80 , ^\circ C$</td>
<td>78</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_j = 25 ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CEO})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_c)</td>
<td></td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CMR}), limited by (T_{jmax})</td>
<td></td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td>(T_i = T_{jmax}), (T_s = 80 ^\circ C)</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GES})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>PFC Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{F}), (T_i = T_{jmax}), (T_s = 80 ^\circ C)</td>
<td></td>
<td>29</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td></td>
<td>180</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td>(T_i = T_{jmax}), (T_s = 80 ^\circ C)</td>
<td>52</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>H-Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CEO})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_c), limited by (T_{jmax}), (T_s = 80 ^\circ C)</td>
<td></td>
<td>44</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CMR}), limited by (T_{jmax})</td>
<td></td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>(T_j \leq 175 ^\circ C), (V_{CE} \leq 650) V</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td>(T_i = T_{jmax}), (T_s = 80 ^\circ C)</td>
<td>78</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GES})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>H-Bridge Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{F})</td>
<td></td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td></td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td>(T_i = T_{jmax}), (T_s = 80 ^\circ C)</td>
<td>58</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Transformer Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_{F}</td>
<td></td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PFA}</td>
<td>$T_j = T_{jimax}$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jimax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>PFC Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_{F}</td>
<td></td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PFA}</td>
<td>$T_j = T_{jimax}$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jimax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Capacitor (DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td></td>
<td>-55...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td></td>
<td>-40...(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $t_p = 2 , s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $t_p = 1 , min$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>7,58</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V<sub>GE</sub> [V]</td>
<td>V<sub>GS</sub> [V]</td>
</tr>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V<sub>F</sub></td>
<td>50</td>
<td>25</td>
<td>1,14</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I<sub>R</sub></td>
<td>1600</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Thermal</td>
<td>R<sub>th(j-s)</sub></td>
<td>λ<sub>paste</sub> = 3,4 W/mK (PSX)</td>
<td>0,90</td>
<td>K/W</td>
</tr>
<tr>
<td>PFC Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V<sub>GE(th)</sub></td>
<td>V<sub>GE</sub> = V<sub>CE</sub></td>
<td>0,0003</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V<sub>CEsat</sub></td>
<td>15</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I<sub>CES</sub></td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I<sub>GES</sub></td>
<td>15</td>
<td>520</td>
<td>30</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r<sub>g</sub></td>
<td>none</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub>in</sub></td>
<td>f= 1 Mhz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub>res</sub></td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t<sub>d(on)</sub></td>
<td>0 / 15</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Rise time</td>
<td>τ<sub>d</sub></td>
<td>25</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t<sub>d(off)</sub></td>
<td>25</td>
<td>125</td>
<td>99</td>
</tr>
<tr>
<td>Fall time</td>
<td>τ<sub>f</sub></td>
<td>25</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E<sub>on</sub></td>
<td>Q<sub>on-LED</sub> = 0,3 µC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E<sub>off</sub></td>
<td>Q<sub>off-LED</sub> = 1,1 µC</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_A</td>
<td>30</td>
<td>25</td>
<td>2,46</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>λ = 3,4 W/mK (PSX)</td>
<td>1,83</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td>0 / 15</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>0 / 15</td>
<td>25</td>
<td>46</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>0 / 15</td>
<td>25</td>
<td>0,342</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>0 / 15</td>
<td>25</td>
<td>0,042</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\left(\frac{di}{dt}\right)_{max}$</td>
<td>0 / 15</td>
<td>25</td>
<td>1007</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>$V_{CE} = V_{CE}$</td>
<td>0,0005</td>
<td>0,005</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CE}</td>
<td></td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{isc}</td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td>$f = 1$ Mhz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td></td>
<td>15</td>
<td>520</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$λ_{PSX} = 3,4 \text{ W/mK}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{on} = 8$ Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{off} = 8$ Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 1,3 \mu$C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 2,7 \mu$C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H-Bridge Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td></td>
<td>40</td>
<td>1.52</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td></td>
<td>650</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>3.4</td>
<td>W/mK</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak recovery current</td>
<td>I_{BRM}</td>
<td></td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{RR}</td>
<td></td>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>350</td>
<td>$1,330$</td>
<td>$3,090$</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td>0.305</td>
<td>0.570</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\left(\frac{di}{dt}\right)_{max}$</td>
<td>25</td>
<td>1064</td>
<td>460</td>
</tr>
</tbody>
</table>

Current Transformer Protection Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td></td>
<td>10</td>
<td>1.67</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td></td>
<td>650</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>3.4</td>
<td>W/mK</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE}</td>
<td>[V]</td>
<td>V_{GS}</td>
<td>10</td>
<td>1,67</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>[V]</td>
<td>I_{1}</td>
<td>Typ</td>
<td>V</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>[V]</td>
<td>I_{2}</td>
<td>Max</td>
<td>V</td>
</tr>
<tr>
<td>V_{F}</td>
<td>[V]</td>
<td>I_{3}</td>
<td>Min</td>
<td>V</td>
</tr>
<tr>
<td>T_{j}</td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFC Sw. Protection Diode

Static

- **Forward voltage**
 - V_F
 - 10
 - 25
 - 125
 - 1,67
 - 1,87
 - V

- **Reverse leakage current**
 - I_R
 - 650
 - 25
 - 0,14
 - μA

Thermal

- **Thermal resistance junction to sink**
 - $R_{th(j-s)}$
 - $I_{sink} = 3,4 \text{ W/mK (PSX)}$
 - 2,87
 - K/W

Capacitor (DC)

- **Capacitance**
 - C
 - 100
 - nF

- **Tolerance**
 - -10
 - +10
 - %

- **Dissipation factor**
 - $f = 1 \text{ kHz}$
 - 25
 - 2,5
 - %

Thermistor

- **Rated resistance**
 - R
 - 25
 - 22
 - kΩ

- **Deviation of R_{tot}**
 - $R_{tot} = 1484 \Omega$
 - 100
 - -5
 - 5
 - %

- **Power dissipation**
 - P
 - 25
 - 5
 - mW

- **Power dissipation constant**
 - 25
 - 1,5
 - mW/K

- **B-value**
 - $B_{25(50)}$
 - Tol. ±1 %
 - 25
 - 3962
 - K

- **B-value**
 - $B_{25(100)}$
 - Tol. ±1 %
 - 25
 - 4000
 - K

Vincotech NTC Reference

10-FY07ZAA050SM-L514B28 datasheet

Copyright Vincotech 2018
Rectifier Diode Characteristics

figure 1. Typical forward characteristics

$I_F = f(V_F)$

\[I_F = f(V_F) \]

figure 2. Transient thermal impedance as a function of pulse width

$Z_{th(j-s)} = f(t_p)$

$D = \frac{t_p}{T}$

$R_{th(j-s)} = 0.90 \text{ K/W}$

Diode thermal model values

<table>
<thead>
<tr>
<th>r (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.53E-02</td>
<td>1.46E+01</td>
</tr>
<tr>
<td>8.25E-02</td>
<td>1.44E+00</td>
</tr>
<tr>
<td>2.22E-01</td>
<td>2.31E-01</td>
</tr>
<tr>
<td>4.39E-01</td>
<td>7.58E-02</td>
</tr>
<tr>
<td>8.14E-02</td>
<td>1.11E-02</td>
</tr>
<tr>
<td>3.58E-02</td>
<td>1.56E-03</td>
</tr>
</tbody>
</table>
PFC Switch Characteristics

Figure 1. IGBT Typical output characteristics

\[
I_C = f(V_{CE})
\]

Figure 2. IGBT Typical output characteristics

\[
I_C = f(V_{CE})
\]

Figure 3. IGBT Typical transfer characteristics

\[
I_C = f(V_{GE})
\]

Figure 4. IGBT Transient thermal impedance as function of pulse duration

\[
Z_{th(j-s)} = f(t_p)
\]

Experiment conditions:
- \(t_p = 250 \mu s\)
- \(V_{CE} = 15 \text{ V}\)
- \(T_j = 125 \text{ °C}\)
- \(150 \text{ °C}\)
- \(V_{GE}\) from 7 V to 17 V in steps of 1 V

transistor thermal model values

\[
V_{CE} = 10 \text{ V}
\]

\[
R_{th(j-s)} = 1,57 \text{ K/W}
\]

Copyright Vincotech
PFC Switch Characteristics

figure 5.
Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

- \(V_{GE} \) = 130 V
- \(V_{GE} \) = 520 V
- \(Q_G \) (nC)
- \(I_C \) = 30 A

figure 6.
Safe operating area

\[I_C = f(V_{CE}) \]

- \(I_C \) (A)
- \(V_{CE} \) (V)
- \(D = \) single pulse
- \(T_J = 80 \) °C
- \(V_{DSS} = \pm 15 \) V
- \(T_J = T_{J\text{max}} \)
PFC Diode Characteristics

Figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \, \mu s \)
- \(T_j = 25 \, ^\circ C \)
- \(D = \frac{t_p}{T} \)
- \(T_j = 125 \, ^\circ C \)
- \(R_{th(j-s)} = 1.83 \, K/W \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05E-02</td>
<td>3.63E+00</td>
</tr>
<tr>
<td>1.50E-01</td>
<td>6.48E-01</td>
</tr>
<tr>
<td>8.27E-01</td>
<td>7.70E-02</td>
</tr>
<tr>
<td>4.06E-01</td>
<td>1.51E-02</td>
</tr>
<tr>
<td>2.16E-01</td>
<td>3.45E-03</td>
</tr>
<tr>
<td>1.73E-01</td>
<td>7.36E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
H-Bridge Switch Characteristics

figure 1.
Typical output characteristics

\[I_C = f(V_{CE}) \]

\[t_p = 250 \, \mu s \]
\[V_{CE} = 15 \, V \]
\[T_J = 25 \, ^\circ C \]

figure 2.
Typical output characteristics

\[I_C = f(V_{CE}) \]

\[t_p = 250 \, \mu s \]
\[V_{CE} \text{ from 5 V to 19 V in steps of 1 V} \]

figure 3.
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

\[t_p = 100 \, \mu s \]
\[V_{CE} = 10 \, V \]
\[T_J = 25 \, ^\circ C \]

figure 4.
Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T} \]
\[R_{eq(s)} = 1.22 \, \text{K/W} \]

IGBT thermal model values

\[R \text{ (K/W)} \quad t \text{ (s)} \]

<table>
<thead>
<tr>
<th>R</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2E-01</td>
<td>8,75E-01</td>
</tr>
<tr>
<td>4,4E-01</td>
<td>1,12E-01</td>
</tr>
<tr>
<td>3,96E-01</td>
<td>3,56E-02</td>
</tr>
<tr>
<td>1,75E-01</td>
<td>7,55E-03</td>
</tr>
<tr>
<td>3,44E-02</td>
<td>1,97E-03</td>
</tr>
<tr>
<td>4,80E-02</td>
<td>4,33E-04</td>
</tr>
</tbody>
</table>
H-Bridge Switch Characteristics

Figure 5. IGBT
Gate voltage vs gate charge
\[V_{GE} = f(Q_G) \]

Figure 6. IGBT
Safe operating area
\[I_C = f(V_{CE}) \]

- \(I_C = 50 \) A
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{jmax} \)
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{jmax} \)
H-Bridge Diode Characteristics

Figure 1.

Typical forward characteristics

\[I_F = f(V_F) \]

- \(V_F \leq 2.5 \, \text{V} \)
- \(T_J = 25 \, ^\circ \text{C}, 125 \, ^\circ \text{C}, 150 \, ^\circ \text{C} \)
- \(f_{T_P} = 250 \, \mu \text{s} \)

Figure 2.

Transient thermal impedance as a function of pulse width

\[Z_{TH} = f(t_p) \]

- \(t_p = 250 \, \mu \text{s} \)
- \(D = t_p / T \)
- \(R_{TH} = 1.63 \, \text{K/W} \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(T_J) (°C)</th>
<th>(t) (s)</th>
<th>(R_{TH}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.005</td>
<td>5.48E-02</td>
</tr>
<tr>
<td>25</td>
<td>0.01</td>
<td>1.35E-01</td>
</tr>
<tr>
<td>25</td>
<td>0.02</td>
<td>6.09E-01</td>
</tr>
<tr>
<td>25</td>
<td>0.05</td>
<td>4.79E-01</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>2.54E-01</td>
</tr>
<tr>
<td>25</td>
<td>0.2</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>125</td>
<td>0.005</td>
<td>4.24E+00</td>
</tr>
<tr>
<td>125</td>
<td>0.01</td>
<td>6.38E-01</td>
</tr>
<tr>
<td>125</td>
<td>0.02</td>
<td>1.07E-01</td>
</tr>
<tr>
<td>125</td>
<td>0.05</td>
<td>3.28E-02</td>
</tr>
<tr>
<td>125</td>
<td>0.1</td>
<td>5.68E-03</td>
</tr>
<tr>
<td>125</td>
<td>0.2</td>
<td>6.59E-04</td>
</tr>
<tr>
<td>150</td>
<td>0.005</td>
<td>1.07E+00</td>
</tr>
<tr>
<td>150</td>
<td>0.01</td>
<td>1.07E-01</td>
</tr>
<tr>
<td>150</td>
<td>0.02</td>
<td>3.28E-02</td>
</tr>
<tr>
<td>150</td>
<td>0.05</td>
<td>5.68E-03</td>
</tr>
<tr>
<td>150</td>
<td>0.1</td>
<td>6.59E-04</td>
</tr>
</tbody>
</table>
Current Transformer Protection Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

\[Z_{th}(j-s) = f(t_p) \]

\[t_p = 250 \mu s \]

\[T_0 = 25 \degree C \]

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 2.87 \text{ K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.53E-02</td>
<td>3.94E+00</td>
</tr>
<tr>
<td>1.48E-01</td>
<td>4.48E-01</td>
</tr>
<tr>
<td>1.31E+00</td>
<td>5.96E-02</td>
</tr>
<tr>
<td>7.32E-01</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>4.04E-01</td>
<td>2.79E-03</td>
</tr>
<tr>
<td>2.11E-01</td>
<td>5.37E-04</td>
</tr>
</tbody>
</table>
PFC Sw. Protection Diode Characteristics

Figure 1.

Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2.

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^\circ C \)
- \(125 \, ^\circ C \)

Thermistor Characteristics

Figure 1.

Typical NTC characteristic as a function of temperature

\[R = f(T) \]
PFC Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

$$E = f(I_C)$$

With an inductive load at

\[V_{in} = 400 \text{ V} \quad T_j = 25 \text{ °C} \]

\[V_{in} = 0 / 15 \text{ V} \quad T_j = 125 \text{ °C} \]

\[R_{on} = 8 \quad \Omega \]

\[I_C = 30 \text{ A} \]

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

$$E = f(R_g)$$

With an inductive load at

\[V_{in} = 400 \text{ V} \quad T_j = 25 \text{ °C} \]

\[V_{in} = 0 / 15 \text{ V} \quad T_j = 125 \text{ °C} \]

\[I_C = 30 \text{ A} \]

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

$$E_{rec} = f(I_C)$$

With an inductive load at

\[V_{in} = 400 \text{ V} \quad T_j = 25 \text{ °C} \]

\[V_{in} = 0 / 15 \text{ V} \quad T_j = 125 \text{ °C} \]

\[R_{on} = 8 \quad \Omega \]

\[I_C = 30 \text{ A} \]

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

$$E_{rec} = f(R_g)$$

With an inductive load at

\[V_{in} = 400 \text{ V} \quad T_j = 25 \text{ °C} \]

\[V_{in} = 0 / 15 \text{ V} \quad T_j = 125 \text{ °C} \]

\[I_C = 30 \text{ A} \]
PFC Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t_{d(on)} = f(I_C) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 0 / 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)

\[t_{d(off)} = f(I_C) \]

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t_{d(on)} = f(R_g) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 0 / 15 \, V \)
- \(I_C = 30 \, A \)

\[t_{d(off)} = f(R_g) \]

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 0 / 15 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(R_{pm} = 8 \, \Omega \)

\[t_{rr} = f(R_{pm}) \]

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 0 / 15 \, V \)
- \(T_j = 125 \, ^\circ C \)
- \(I_C = 30 \, A \)
PFC Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 0 / 15 \) V
- \(R_{gon} = 8 \) Ω

\(T_j = 25 \) °C

\(Q_r \) vs. \(I_C \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 0 / 15 \) V
- \(I_C = 30 \) A

\(T_j = 125 \) °C

\(Q_r \) vs. \(R_{gon} \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 0 / 15 \) V
- \(R_{gon} = 8 \) Ω

\(T_j = 25 \) °C

\(I_{RM} \) vs. \(I_C \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
- \(V_{CE} = 400 \) V
- \(V_{GE} = 0 / 15 \) V
- \(I_C = 30 \) A

\(T_j = 125 \) °C

\(I_{RM} \) vs. \(R_{gon} \)
PFC Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_F}{dt}, \frac{dI_{RR}}{dt} = f(I_C) \]

At

- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 0 \text{ / } 15 \text{ V} \)
- \(T_j = 25 ^\circ \text{C} \)
- \(R_{gon} = 8 \Omega \)
- \(I_C = 30 \text{ A} \)

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_F}{dt}, \frac{dI_{RR}}{dt} = f(R_{gon}) \]

At

- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = 0 \text{ / } 15 \text{ V} \)
- \(T_j = 150 ^\circ \text{C} \)
- \(J_C = 30 \text{ A} \)

Figure 15. IGBT
Reverse bias safe operating area

\(I_C = f(V_{CE}) \)

At

- \(T_j = 125 ^\circ \text{C} \)
- \(R_{on} = 8 \Omega \)
- \(R_{off} = 8 \Omega \)
PFC Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{g,on}$</td>
<td>8 Ω</td>
</tr>
<tr>
<td>$R_{g,off}$</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>

Figure 1. Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{CE}(0%) = 0$ V
- $V_{CE}(100%) = 15$ V
- $I_C(100%) = 400$ V
- $I_C(100%) = 30$ A
- $t_{doff} = 115$ ns

Figure 2. Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{CE}(0%) = 0$ V
- $V_{CE}(100%) = 15$ V
- $I_C(100%) = 400$ V
- $I_C(100%) = 30$ A
- $t_{don} = 17$ ns

Figure 3. Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(100%) = 400$ V
- $I_C(10%) = 30$ A
- $t_f = 7$ ns

Figure 4. Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(100%) = 400$ V
- $I_C(10%) = 30$ A
- $t_r = 6$ ns
PFC Switching Characteristics

Figure 5. FWD
Turn-off Switching Waveforms & definition of t_{rr}

$V_F (100\%) = 400 \text{ V}$
$I_F (100\%) = 30 \text{ A}$
$I_{max} (100\%) = 46 \text{ A}$
$t_{rr} = 44 \text{ ns}$

Figure 6. FWD
Turn-on Switching Waveforms & definition of t_{Qr} ($t_{Qr} = \text{ integrating time for } Q_r$)

$I_r (100\%) = 30 \text{ A}$
$I_{max} (100\%) = 1.06 \mu\text{C}$
H-Bridge Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

- \(V_{DD} = 350 \) V
- \(T_J = 125 \) °C
- \(R_{Gate} = 8 \) Ω

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C

- \(V_{DD} = 350 \) V
- \(T_J = 125 \) °C
- \(I_C = 50 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

- \(V_{DD} = 350 \) V
- \(T_J = 125 \) °C
- \(R_{Gate} = 8 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C

- \(V_{DD} = 350 \) V
- \(T_J = 125 \) °C
- \(I_C = 50 \) A
H-Bridge Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

$t_{d(on)} = f(I_C)$

With an inductive load at
$T_j = 150 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 8 \, \Omega$
$I_C = 50 \, A$

Figure 6. IGBT
Typical switching times as a function of gate resistor

$t_{d(off)} = f(R_g)$

With an inductive load at
$T_j = 150 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{goff} = 8 \, \Omega$

Figure 7. FWD
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

With an inductive load at
$T_j = 25 \, ^\circ C$
$V_{CE} = 350 \, V$
$T_j = 125 \, ^\circ C$
$V_{CE} = 150 \, ^\circ C$
$R_{gon} = 8 \, \Omega$

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{gon})$

With an inductive load at
$T_j = 25 \, ^\circ C$
$V_{CE} = 350 \, V$
$R_{gon} = 50 \, A$
H-Bridge Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_{r} = f(I_{C}) \]

With an inductive load at
\[V_{IN} = 350 \text{ V} \]
\[I_{C} = 50 \text{ A} \]
\[T_{j} = 25^\circ \text{C} \]

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_{r} = f(R_{gon}) \]

With an inductive load at
\[V_{IN} = 350 \text{ V} \]
\[I_{C} = 50 \text{ A} \]
\[T_{j} = 150^\circ \text{C} \]

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_{C}) \]

With an inductive load at
\[V_{IN} = 350 \text{ V} \]
\[I_{C} = 50 \text{ A} \]
\[T_{j} = 25^\circ \text{C} \]

Figure 12a. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

With an inductive load at
\[V_{IN} = 350 \text{ V} \]
\[I_{C} = 50 \text{ A} \]
\[T_{j} = 150^\circ \text{C} \]
H-Bridge Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_C)
\]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{gon} = 8 \) Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{on})
\]

With an inductive load at 25 °C
- \(V_{CE} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{on} = 8 \) Ω

Figure 15. IGBT
Reverse bias safe operating area
\[
I_C = f(V_{CE})
\]

At
- \(T_j = 125 \) °C
- \(R_{on} = 8 \) Ω
- \(R_{off} = 8 \) Ω

Copyright Vincotech
H-Bridge Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{GS}</td>
<td>8 Ω</td>
</tr>
<tr>
<td>R_{ON}</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>

Figure 1: Turn-off Switching Waveforms & definition of \(t_{Eoff} \) (\(t_{Eoff} \) = integrating time for \(E_{off} \))

- $V_{CE}(0\%) = -15 \text{ V}$
- $V_{CE}(100\%) = 15 \text{ V}$
- $I_{C}(100\%) = 350 \text{ V}$
- $I_{C}(10\%) = 50 \text{ A}$
- $t_{Eoff} = 99 \text{ ns}$

Figure 2: Turn-on Switching Waveforms & definition of \(t_{Eon} \) (\(t_{Eon} \) = integrating time for \(E_{on} \))

- $V_{CE}(0\%) = -15 \text{ V}$
- $V_{CE}(100\%) = 15 \text{ V}$
- $I_{C}(100\%) = 350 \text{ V}$
- $I_{C}(10\%) = 50 \text{ A}$
- $t_{Eon} = 133 \text{ ns}$

Figure 3: Turn-off Switching Waveforms & definition of \(I_{C10\%} \)

- $V_{CE}(10\%) = 350 \text{ V}$
- $I_{C}(10\%) = 50 \text{ A}$
- $t_{f} = 7 \text{ ns}$

Figure 4: Turn-on Switching Waveforms & definition of \(I_{C10\%} \)

- $V_{CE}(10\%) = 350 \text{ V}$
- $I_{C}(10\%) = 50 \text{ A}$
- $t_{r} = 35 \text{ ns}$
H-Bridge Switching Characteristics

Figure 5.

<table>
<thead>
<tr>
<th>Turn-off Switching Waveforms & definition of t_{Qr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_F(100%) = 350$ V</td>
</tr>
<tr>
<td>$I_F(100%) = 50$ A</td>
</tr>
<tr>
<td>$I_{Fmax}(100%) = 35$ A</td>
</tr>
<tr>
<td>$t_{rr} = 120$ ns</td>
</tr>
</tbody>
</table>

Figure 6.

<table>
<thead>
<tr>
<th>Turn-on Switching Waveforms & definition of I_{Qr} ($I_{Qr} = \text{integrating time for } Q$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F}(100%) = 50$ A</td>
</tr>
<tr>
<td>$Q_r(100%) = 2.70$ μC</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>D31, D32, D33, D34</td>
</tr>
<tr>
<td>T25, T27</td>
</tr>
<tr>
<td>D25, D27</td>
</tr>
<tr>
<td>T11, T12, T13, T14</td>
</tr>
<tr>
<td>D11, D12, D13, D14</td>
</tr>
<tr>
<td>D26, D28</td>
</tr>
<tr>
<td>D45, D47</td>
</tr>
<tr>
<td>C1, C2</td>
</tr>
<tr>
<td>R2</td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.