flowRPI 1 650 V / 15 A

Features
- High integration level of Rectifier, PFC and Inverter
- Interleaved PFC with high efficiency, fast IGBT H5 + ultra-fast Si Diode
- High efficiency H-Bridge inverter with fast IGBT H5
- Integrated Temperature Sensor and Capacitor

Target applications
- Charging Stations
- Power Supply
- Welding & Cutting

Types
- 10-FY07ZAA015SM-L512B28

Maximum Ratings
$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_T</td>
<td>$T_j = T_{j\text{max}}$ \quad T_s = 80 , ^\circ C$</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>50 Hz Single Half Sine Wave \quad T_j = 150 , ^\circ C$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>I_{2t}</td>
<td>$T_j = T_{j\text{max}}$ \quad T_s = 80 , ^\circ C$</td>
<td>370</td>
<td>A²s</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_T</td>
<td>$T_j = T_{j\text{max}}$ \quad T_s = 80 , ^\circ C$</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>^\circ C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{ces}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CM}</td>
<td>I_p limited by $T_{j_{max}}$</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{ges}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>PFC Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>PFC Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>Current Transformer Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j_{max}}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>^\circ\text{C}</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \degree C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CM}</td>
<td>I_i limited by T_{jmax}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td>$I_i = T_{jmax}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td>$I_i = T_{jmax}$</td>
<td>175</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

H-Bridge Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FHM}</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>38</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td>$I_i = T_{jmax}$</td>
<td>175</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

Capacitor (DC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td></td>
<td>-55...+125</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

Module Properties

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>-40...+125</td>
<td>\degree C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td>$I_i = T_{jmax}$, $T_i = 80 \degree C$</td>
<td>-40...(T_{jmax} - 25)</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>DC Test Voltage*</th>
<th>$t_i = 2 s$</th>
<th>AC Voltage</th>
<th>$t_i = 1 min$</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>6000</td>
<td></td>
<td>2500</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min. 12,7</td>
<td></td>
<td>7,58</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td>> 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GE} [V]</td>
<td>V_{GS} [V]</td>
<td>I_{C} [A]</td>
</tr>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td>V_{F} [V]</td>
<td>I_{C} [A]</td>
<td>I_{D} [A]</td>
</tr>
</tbody>
</table>

Static

- **Forward voltage**
 - V_F: 35, 125
 - V_J: 1,17, 1,5

- **Reverse leakage current**
 - I_R: 1600
 - I_B: 50

Thermal

- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - $T_J = 3.4 \text{ W/mK}$ (PSX)
 - T_J: 1,25

Note: Values are approximate.

Copyright Vincotech

10-FY07ZAA015SM-L512B28 datasheet

20 Mar. 2019 / Revision 1
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGE</td>
<td>[V]</td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>VGS</td>
<td>[V]</td>
<td>0,0004</td>
<td>25</td>
<td>3,3</td>
</tr>
<tr>
<td>VCE</td>
<td>[V]</td>
<td>15</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Ics</td>
<td>[A]</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Ioss</td>
<td>[A]</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>rgg</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Cies</td>
<td>f = 1 Mhz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Coes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>Cres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Qg</td>
<td>15</td>
<td>520</td>
<td>15</td>
</tr>
</tbody>
</table>

PFC Switch

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>VGE(th)</td>
<td>VCE = 0</td>
<td>0,004</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>VCEsat</td>
<td></td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>Ics</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>Ioss</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>Rth(j-s)</td>
<td>λ-paste = 3,4 W/mK (PSX)</td>
<td>2,14</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>tδ(on)</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Rise time</td>
<td>τr</td>
<td>Rgg = 32 Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>tδ(off)</td>
<td>Rgg = 32 Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Fall time</td>
<td>τf</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>Eon</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>Eoff</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE}</td>
<td>V</td>
<td>15</td>
<td>1,98</td>
<td>2,48</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>V</td>
<td>25</td>
<td>1,73</td>
<td>3</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>V</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td>V</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{F}</td>
<td>V</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>A</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>A</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{R}</td>
<td>A</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>$°C$</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>15</td>
<td>125</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Typ</td>
<td>10</td>
<td>125</td>
<td>0,14</td>
<td>25</td>
</tr>
<tr>
<td>Max</td>
<td>150</td>
<td>25</td>
<td>2,87</td>
<td>150</td>
</tr>
<tr>
<td>$R_{th(j-s)}$</td>
<td>K/W</td>
<td>3,4 W/mK</td>
<td>2,87</td>
<td></td>
</tr>
</tbody>
</table>

PFC Diode

Static
- **Forward voltage** V_j
 - 15 V
 - 25 V
 - 125 V
- **Reverse leakage current** I_r
 - 650 µA
 - 25 µA

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - $3,4 \text{ W/mK (PSX)}$
 - 1,65 K/W

Dynamic
- **Peak recovery current** I_{RRM}
 - 0 / 15 A
 - 25 A
 - 125 A
 - 150 A
- **Reverse recovery time** t_{rr}
 - 25 ns
 - 125 ns
 - 150 ns
- **Recovered charge** Q_d
 - 0 / 15 μC
 - 25 μC
 - 125 μC
 - 150 μC
- **Reverse recovered energy** E_{rec}
 - 25 mWs
 - 125 mWs
 - 150 mWs
- **Peak rate of fall of recovery current** $|di/dt|_{max}$
 - 25 A/μs
 - 125 A/μs
 - 150 A/μs

PFC Sw. Protection Diode

Static
- **Forward voltage** V_j
 - 10 V
 - 25 V
 - 125 V
- **Reverse leakage current** I_r
 - 650 µA
 - 25 µA

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - $3,4 \text{ W/mK (PSX)}$
 - 2,87 K/W

Current Transformer Protection Diode

Static
- **Forward voltage** V_j
 - 10 V
 - 25 V
 - 125 V
- **Reverse leakage current** I_r
 - 650 µA
 - 25 µA

Thermal
- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - $3,4 \text{ W/mK (PSX)}$
 - 2,87 K/W

Copyright Vincotech

20 Mar. 2019 / Revision 1
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>(V_{GE})</td>
<td>(V_{CC} = V_Ce)</td>
<td>0,0004</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>(I_C)</td>
<td>(I_o)</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Temperature</td>
<td>(T_{j})</td>
<td>(^{o}C)</td>
<td>1,64</td>
<td>1,77</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CES})</td>
<td>25</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>(I_{CSS})</td>
<td>0</td>
<td>1500</td>
<td>650</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GES})</td>
<td>20</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>(r_g)</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>(f = 1) MHz</td>
<td>24</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td>(f = 1) MHz</td>
<td>4</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{res})</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_g)</td>
<td>15</td>
<td>520</td>
<td>15</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>(\lambda_{paste} = 3,4) W/mK</td>
<td>2,14</td>
<td>K/W</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>(R_{on} = 32) Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>(R_{off} = 32) Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>-5 / 15</td>
<td>350</td>
<td>15</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>(\Omega_{F} = 0,4) µC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>(E_{on})</td>
<td>(\Omega_{F} = 0,8) µC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>(E_{off})</td>
<td>(\Omega_{F} = 0,9) µC</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H-Bridge Diode

Static

- **Forward voltage**
 - Symbol: \(V_t \)
 - Conditions: 10, 25, 125, 150
 - Value: 1.52, 1.43, 1.41
 - Unit: V

- **Reverse leakage current**
 - Symbol: \(I_r \)
 - Conditions: 650
 - Value: 0.64
 - Unit: µA

Thermal

- **Thermal resistance junction to sink**
 - Symbol: \(R_{th(j-s)} \)
 - Value: 2.53
 - Unit: K/W

Dynamic

- **Peak recovery current**
 - Symbol: \(I_{RM} \)
 - Conditions: 25, 125, 150
 - Value: 9, 11, 13
 - Unit: A

- **Reverse recovery time**
 - Symbol: \(t_{rr} \)
 - Conditions: 25, 125, 150
 - Value: 100, 125, 136
 - Unit: ns

- **Recovered charge**
 - Symbol: \(Q_r \)
 - Conditions: 25, 125, 150
 - Value: 0.443, 0.813, 0.928
 - Unit: µC

- **Reverse recovered energy**
 - Symbol: \(E_{rec} \)
 - Conditions: 25, 125, 150
 - Value: 0.077, 0.153, 0.174
 - Unit: mWs

- **Peak rate of fall of recovery current**
 - Symbol: \(di/dt\)max
 - Conditions: 25, 125, 150
 - Value: 50, 79, 84
 - Unit: A/µs

Capacitor (DC)

- **Capacitance**
 - Symbol: \(C \)
 - Value: 100
 - Unit: nF

- **Tolerance**
 - Value: \(-10\) %, \(+10\) %

- **Dissipation factor**
 - Symbol: \(f\)
 - Value: 1 kHz
 - Value: 25
 - Unit: %

Thermistor

- **Rated resistance**
 - Symbol: \(R \)
 - Conditions: 25
 - Value: 22
 - Unit: kΩ

- **Deviation of \(R_{100} \)**
 - Symbol: \(\Delta R \)
 - Value: 1484 Ω
 - Value: 100, -5
 - Unit: %

- **Power dissipation**
 - Symbol: \(P \)
 - Value: 25, 5
 - Unit: mW

- **Power dissipation constant**
 - Value: 25, 1.5
 - Unit: mW/K

- **B-value**
 - Symbol: \(R_{(25/100)} \)
 - Value: 25
 - Value: 3962
 - Unit: K

- **B-value**
 - Symbol: \(R_{(25/200)} \)
 - Value: 25
 - Value: 4000
 - Unit: K

Vincotech NTC Reference
Rectifier Diode Characteristics

Typical forward characteristics

$I_F = f(V_F)$

$Z_{th(j-s)} = f(t_p)$

$t_p = 250 \ \mu s$

$D = t_p / T$

$R_{th(j)} = 1,25 \ \text{K/W}$

Diode thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,00E-02</td>
<td>5,22E+00</td>
</tr>
<tr>
<td>1,56E-01</td>
<td>4,18E-01</td>
</tr>
<tr>
<td>6,95E-01</td>
<td>8,82E-02</td>
</tr>
<tr>
<td>2,23E-01</td>
<td>3,07E-02</td>
</tr>
<tr>
<td>9,97E-02</td>
<td>5,99E-03</td>
</tr>
</tbody>
</table>
PFC Switch Characteristics

Figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 2. IGBT
Typical output characteristics
$I_C = f(V_{GE})$

Figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4. IGBT
Transient thermal impedance as function of pulse duration
$Z_{th(j-s)} = f(t_p)$

$Z_{th(j-s)} (K/W)$

$t_p (s)$

$D = \frac{t_p}{T}$

$R_{th(j-s)} (K/W)$

IGBT thermal model values

$$R \quad (K/W) \quad t \quad (s)$$

1,10E-01 \quad 1,85E+00
3,05E-01 \quad 2,58E-01
8,44E-01 \quad 6,42E-02
4,55E-01 \quad 1,26E-02
2,79E-01 \quad 3,05E-03
1,45E-01 \quad 4,84E-04

Copyright Vincotech
PFC Switch Characteristics

Figure 5. Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

\[I_C = f(V_{CE}) \]

- \[I_C = 15 \text{ A} \]
- \[Q_G = \text{single pulse} \]
- \[V_{GE} = \pm 15 \text{ V} \]
- \[T_j = T_{jmax} \]

Figure 6. Safe operating area

\[I_C = f(V_{GE}) \]

- \[D = \text{single pulse} \]
- \[T_s = 80 \text{ °C} \]
- \[V_{CE} = \pm 15 \text{ V} \]
- \[T_j = T_{jmax} \]
PFC Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \degree C \)
- \(125 \degree C \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,51E-02</td>
<td>2,42E+00</td>
</tr>
<tr>
<td>2,35E-01</td>
<td>2,44E-01</td>
</tr>
<tr>
<td>7,47E-01</td>
<td>5,47E-02</td>
</tr>
<tr>
<td>3,32E-01</td>
<td>1,02E-02</td>
</tr>
<tr>
<td>2,07E-01</td>
<td>1,74E-03</td>
</tr>
<tr>
<td>5,85E-02</td>
<td>4,12E-04</td>
</tr>
</tbody>
</table>

\[D = \frac{t_p}{T} \]
PFC Sw. Protection Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^\circ C \)
- \(125 \, ^\circ C \)
- \(\tau \) values:
 - \(6.53 \times 10^{-2} \) s
 - \(4.84 \times 10^{-1} \) s
 - \(1.31 \times 10^{-2} \) s
 - \(1.32 \times 10^{-1} \) s
 - \(4.04 \times 10^{-2} \) s
 - \(2.11 \times 10^{-1} \) s

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.87</td>
<td></td>
</tr>
</tbody>
</table>

\(D = \frac{t_F}{\tau} \)

Copyright Vincotech

20 Mar. 2019 / Revision 1
Current Transformer Protection Diode Characteristics

figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 250 \mu s \]

\[25 \, ^\circ C \]

\[125 \, ^\circ C \]

FWD

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.53E-02</td>
<td>3.94E+00</td>
</tr>
<tr>
<td>1.48E-01</td>
<td>4.48E-01</td>
</tr>
<tr>
<td>1.31E+00</td>
<td>5.96E-02</td>
</tr>
<tr>
<td>7.32E-01</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>4.04E-01</td>
<td>2.79E-03</td>
</tr>
<tr>
<td>2.11E-01</td>
<td>5.37E-04</td>
</tr>
</tbody>
</table>

\(D = \frac{t_p}{\tau} \)
H-Bridge Switch Characteristics

Typical output characteristics

\[I_C = f(V_{CE}) \]

\(t_p \)	250 \(\mu \)s	25 \(^\circ \)C
\(V_{CE} \)	15 V	
\(T_j \)	125 \(^\circ \)C	
\(V_{CE} \)	150 \(^\circ \)C	

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 100 \mu s \]
\[V_{CE} = 10 V \]
\[T_j = 125 \, ^{\circ}C \]
\[150 \, ^{\circ}C \]

\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 2,14 \, K/W \]

IGBT thermal model values

\(R \) (K/W) \(t \) (s) 1,10E-01 1,85E+00 3,05E-01 2,58E-01 8,44E-01 6,42E-02 4,55E-01 1,26E-02 2,79E-01 3,05E-03 1,45E-01 4,84E-04
H-Bridge Switch Characteristics

Figure 5. Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

\[I_C = 15 \text{ A} \]

Figure 6. Safe operating area

\[I_C = f(V_{CE}) \]

\[V_{GE} = \pm 15 \text{ V} \]

\[T_j = T_{jmax} \]

\[V_{CE} = 520 \text{ V} \]

\[I_C = 15 \text{ A} \]

\[T_s = 80 \text{ °C} \]

\[D = \text{ single pulse} \]

Vincotech
H-Bridge Diode Characteristics

Typical forward characteristics

\[I_f = f(V_f) \]

![Graph showing typical forward characteristics](image)

\[t_p = 250 \mu s \]

\[T_j: \]
- 25 °C
- 125 °C
- 150 °C

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

![Graph showing transient thermal impedance](image)

\[D = \frac{t_p}{T} \]

- \[R_{th(j-s)} = 2.53 \text{ K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04E-01</td>
<td>2.72E+00</td>
</tr>
<tr>
<td>2.14E-01</td>
<td>3.17E-01</td>
</tr>
<tr>
<td>1.08E+00</td>
<td>5.77E-02</td>
</tr>
<tr>
<td>4.24E-01</td>
<td>1.53E-02</td>
</tr>
<tr>
<td>4.88E-01</td>
<td>3.55E-02</td>
</tr>
<tr>
<td>2.17E-01</td>
<td>7.36E-02</td>
</tr>
</tbody>
</table>

NTC characteristic as a function of temperature

\[R = f(T) \]

![Graph showing NTC characteristic](image)

Thermistor Characteristics

Typical NTC characteristic as a function of temperature

\[R = f(T) \]

![Graph showing NTC characteristic](image)
PFC Switching Characteristics

Figure 1. Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at:
- \(V_{CE} = 400 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(V_{CE} = 0 / 15 \text{ V} \)
- \(T_j = 150 \degree C \)
- \(R_{on} = 32 \Omega \)

Figure 2. Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at:
- \(V_{CE} = 400 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(V_{CE} = 0 / 15 \text{ V} \)
- \(T_j = 150 \degree C \)
- \(I_C = 15 \text{ A} \)

Figure 3. Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at:
- \(V_{CE} = 400 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(V_{CE} = 0 / 15 \text{ V} \)
- \(T_j = 150 \degree C \)
- \(R_{off} = 32 \Omega \)

Figure 4. Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at:
- \(V_{CE} = 400 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(V_{CE} = 0 / 15 \text{ V} \)
- \(T_j = 150 \degree C \)
- \(I_C = 15 \text{ A} \)
PFC Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at:
- \(T_j = 150 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{CC} = 0 / 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)
- \(I_C = 15 \, A \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at:
- \(T_j = 150 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{CC} = 0 / 15 \, V \)
- \(I_C = 15 \, A \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

With an inductive load at:
- \(T_j = 25 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{CC} = 0 / 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)
- \(I_C = 15 \, A \)

Figure 8. FWD
Typical reverse recovery time as a function of gate resistor

\[t_{rr} = f(R_{gon}) \]

With an inductive load at:
- \(T_j = 25 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{CC} = 0 / 15 \, V \)
- \(I_C = 15 \, A \)
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 150 \, V \)
- \(V_{CC} = 0 / 15 \, V \)
- \(I_C = 15 \, A \)
PFC Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

With an inductive load at

- \(V_{CE} = 400 \) V
- \(I_C = 15 \) A
- \(R_{gon} = 32 \Omega \)
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C

Figure 10. Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

With an inductive load at

- \(V_{CE} = 400 \) V
- \(I_C = 15 \) A
- \(R_{gon} = 32 \Omega \)
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C

Figure 11. Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

With an inductive load at

- \(V_{CE} = 400 \) V
- \(I_C = 15 \) A
- \(R_{gon} = 32 \Omega \)
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C

Figure 12. Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

With an inductive load at

- \(V_{CE} = 400 \) V
- \(I_C = 15 \) A
- \(R_{gon} = 32 \Omega \)
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C
PFC Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{d\bar{i}_F}{dt}, \frac{d\bar{i}_{rr}}{dt} = f(I_C)
\]

With an inductive load at
\[
\begin{align*}
V_{CE} &= 400 \text{ V} \\
V_{DS} &= 0 / 15 \text{ V} \\
R_{goff} &= 32 \Omega
\end{align*}
\]

At
\[
T_j = 25 \degree C
\]

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn-on gate resistor
\[
\frac{d\bar{i}_F}{dt}, \frac{d\bar{i}_{rr}}{dt} = f(R_{gon})
\]

With an inductive load at
\[
\begin{align*}
V_{CE} &= 400 \text{ V} \\
V_{DS} &= 0 / 15 \text{ V} \\
I_C &= 15 \text{ A}
\end{align*}
\]

At
\[
T_j = 25 \degree C
\]

Figure 15. IGBT
Reverse bias safe operating area
\[
I_C = f(V_{CE})
\]

At
\[
\begin{align*}
T_j &= 125 \degree C \\
R_{goff} &= 32 \Omega \\
R_{gon} &= 32 \Omega
\end{align*}
\]
PFC Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>V_J</th>
<th>125 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{	ext{pm}}$</td>
<td>32 Ω</td>
</tr>
<tr>
<td>$R_{	ext{off}}$</td>
<td>32 Ω</td>
</tr>
</tbody>
</table>

Figure 1.

**Turn-off Switching Waveforms & definition of $t_{	ext{doff}}$, $t_{	ext{Eoff}}$ ($t_{	ext{Eoff}} = \text{integrating time for } E_{	ext{off}}$)

- $V_{GE}(0\%) = 0 \text{ V}$
- $V_{CE}(0\%) = 15 \text{ V}$
- $V_{GE}(100\%) = 15 \text{ V}$
- $V_{CE}(100\%) = 400 \text{ V}$
- $I_{C}(1\%) = 170 \text{ ns}$

Figure 2.

**Turn-on Switching Waveforms & definition of $t_{	ext{don}}$, $t_{	ext{Eon}}$ ($t_{	ext{Eon}} = \text{integrating time for } E_{	ext{on}}$)

- $V_{GE}(0\%) = 0 \text{ V}$
- $V_{CE}(0\%) = 15 \text{ V}$
- $V_{GE}(100\%) = 15 \text{ V}$
- $V_{CE}(100\%) = 400 \text{ V}$
- $I_{C}(1\%) = 18 \text{ ns}$

Figure 3.

**Turn-off Switching Waveforms & definition of t_{f}

- $V_{CE}(1\%) = 400 \text{ V}$
- $I_{C}(1\%) = 15 \text{ A}$
- $t_{f} = 10 \text{ ns}$

Figure 4.

**Turn-on Switching Waveforms & definition of t_{r}

- $V_{CE}(1\%) = 400 \text{ V}$
- $I_{C}(1\%) = 15 \text{ A}$
- $t_{r} = 14 \text{ ns}$
PFC Switching Characteristics

Figure 5. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_F (100\%) = 400 \text{ V}$
- $I_F (100\%) = 15 \text{ A}$
- $I_{F_{\text{max}}}(100\%) = 11 \text{ A}$
- $t_{rr} = 84 \text{ ns}$

Figure 6. FWD
Turn-on Switching Waveforms & definition of t_{Qr} (Integrating time for Q_r)

- $I_{F_{\text{max}}} (100\%) = 15 \text{ A}$
- $Q_r (100\%) = 0.442 \mu\text{C}$
H-Bridge Switching Characteristics

Figure 1. Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CI} = -5 / 15 \text{ V} \)
- \(R_{g0} = 32 \Omega \)

\[T_j = 25 \text{ °C} \]
\[T_j = 125 \text{ °C} \]
\[T_j = 150 \text{ °C} \]

Figure 2. Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CI} = -5 / 15 \text{ V} \)
- \(I_C = 15 \text{ A} \)

\[T_j = 25 \text{ °C} \]
\[T_j = 125 \text{ °C} \]
\[T_j = 150 \text{ °C} \]

Figure 3. Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CI} = -5 / 15 \text{ V} \)
- \(R_{g0} = 32 \Omega \)

\[T_j = 25 \text{ °C} \]
\[T_j = 125 \text{ °C} \]
\[T_j = 150 \text{ °C} \]

Figure 4. Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CI} = -5 / 15 \text{ V} \)
- \(I_C = 15 \text{ A} \)

\[T_j = 25 \text{ °C} \]
\[T_j = 125 \text{ °C} \]
\[T_j = 150 \text{ °C} \]
H-Bridge Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current
$t = f(I_C)$

- With an inductive load at
 - $T_j = 150 ^\circ C$
 - $V_{CE} = 350$ V
 - $V_{CE} = -5 / 15$ V
 - $R_{gon} = 32 \Omega$
 - $R_{goff} = 32 \Omega$

Figure 6. IGBT
Typical switching times as a function of gate resistor
$t = f(R_g)$

- With an inductive load at
 - $T_j = 150 ^\circ C$
 - $V_{CE} = 350$ V
 - $V_{CE} = -5 / 15$ V
 - $I_C = 15$ A

Figure 7. FWD
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

- With an inductive load at
 - $T_j = 25 ^\circ C$
 - $V_{CE} = 350$ V
 - $V_{CE} = -5 / 15$ V
 - $R_{gon} = 32 \Omega$

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

- With an inductive load at
 - $T_j = 25 ^\circ C$
 - $V_{CE} = 350$ V
 - $V_{CE} = -5 / 15$ V
 - $I_C = 15$ A
H-Bridge Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

![Graph showing typical recovered charge as a function of collector current](image)

- With an inductive load at
 - \(V_{CI} = 350 \text{ V} \)
 - \(T_J = 25 ^\circ \text{C} \)
 - \(V_{CI} = -5 / 15 \text{ V} \)
 - \(T_J = 125 ^\circ \text{C} \)
 - \(I_C = 15 \text{ A} \)

Figure 10. Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

![Graph showing typical recovered charge as a function of gate resistor](image)

- With an inductive load at
 - \(V_{CI} = 350 \text{ V} \)
 - \(T_J = 25 ^\circ \text{C} \)
 - \(V_{CI} = -5 / 15 \text{ V} \)
 - \(T_J = 125 ^\circ \text{C} \)
 - \(R_{gon} = 32 \Omega \)

Figure 11. Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

![Graph showing typical peak reverse recovery current as a function of collector current](image)

- With an inductive load at
 - \(V_{CI} = 350 \text{ V} \)
 - \(T_J = 25 ^\circ \text{C} \)
 - \(V_{CI} = -5 / 15 \text{ V} \)
 - \(T_J = 125 ^\circ \text{C} \)
 - \(R_{gon} = 32 \Omega \)

Figure 12. Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

![Graph showing typical peak reverse recovery current as a function of gate resistor](image)

- With an inductive load at
 - \(V_{CI} = 350 \text{ V} \)
 - \(T_J = 25 ^\circ \text{C} \)
 - \(V_{CI} = -5 / 15 \text{ V} \)
 - \(T_J = 125 ^\circ \text{C} \)
 - \(I_c = 15 \text{ A} \)
H-Bridge Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_F}{dt} = f(I_C) \]
\[\frac{dI_{rr}}{dt} = f(R_{gon}) \]

With an inductive load at
- \(V_{CE} = 350 \) V
- \(V_{CC} = -5 / 15 \) V
- \(R_{pm} = 32 \) Ω
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn-on gate resistor
\[\frac{dI_F}{dt} = f(I_C) \]
\[\frac{dI_{rr}}{dt} = f(R_{gon}) \]

With an inductive load at
- \(V_{CE} = 350 \) V
- \(V_{CC} = -5 / 15 \) V
- \(I_C = 15 \) A
- \(T_j = 25 \) °C
- \(T_j = 125 \) °C
- \(T_j = 150 \) °C

Figure 15. IGBT
Reverse bias safe operating area
\[I_C = f(V_{CE}) \]
- \(T_j = 125 \) °C
- \(R_{gon} = 32 \) Ω
- \(R_{goff} = 32 \) Ω
H-Bridge Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>32 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>32 Ω</td>
</tr>
</tbody>
</table>

Figure 1.

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -5$ V
- $V_{GE}(100\%) = 15$ V
- $I_{C}(0\%) = 15$ A
- $I_{C}(1\%) = 111$ ns

Figure 2.

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -5$ V
- $V_{GE}(100\%) = 15$ V
- $I_{C}(0\%) = 15$ A
- $I_{C}(1\%) = 35$ ns

Figure 3.

Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(0\%) = 350$ V
- $I_{C}(0\%) = 15$ A
- $I_{C}(1\%) = 9$ ns

Figure 4.

Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(0\%) = 350$ V
- $I_{C}(0\%) = 15$ A
- $I_{C}(1\%) = 13$ ns
H-Bridge Switching Characteristics

Figure 5. FWD

Switching waveforms & definition of t_{rr}

- $V_F(100\%) = 350 \text{ V}$
- $I_F(100\%) = 15 \text{ A}$
- $I_{\text{FMAX}}(100\%) = 11 \text{ A}$
- $t_{\text{rr}} = 125 \text{ ns}$

Figure 6. FWD

Turn-on switching waveforms & definition of t_{Qr}

- $I_q(100\%) = 15 \text{ A}$
- $Q_r(100\%) = 0.813 \mu\text{C}$
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing with solder pins</td>
<td>10-FY07ZAA015SM-L512B28</td>
</tr>
<tr>
<td>with thermal paste 12mm housing with solder pins</td>
<td>10-FY07ZAA015SM-L512B28-y3/</td>
</tr>
</tbody>
</table>

Datamatrix

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WWYY</td>
<td>UL VIN</td>
<td>LLLLL</td>
<td>SSSS</td>
</tr>
</tbody>
</table>

Ordering Code & Marking

<table>
<thead>
<tr>
<th>TT</th>
<th>TT</th>
<th>TT</th>
<th>TT</th>
<th>TT</th>
<th>WW</th>
<th>YY</th>
<th>UL</th>
<th>VIN</th>
<th>LLLLL</th>
<th>SSSS</th>
</tr>
</thead>
</table>

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52,9</td>
<td>0</td>
<td>G13</td>
</tr>
<tr>
<td>2</td>
<td>49,9</td>
<td>0</td>
<td>S13</td>
</tr>
<tr>
<td>3</td>
<td>41,9</td>
<td>0</td>
<td>Ph2</td>
</tr>
<tr>
<td>4</td>
<td>39,2</td>
<td>0</td>
<td>Ph2</td>
</tr>
<tr>
<td>5</td>
<td>36,2</td>
<td>0</td>
<td>S14</td>
</tr>
<tr>
<td>6</td>
<td>33,2</td>
<td>0</td>
<td>G14</td>
</tr>
<tr>
<td>7</td>
<td>22,0</td>
<td>0</td>
<td>PFC+</td>
</tr>
<tr>
<td>8</td>
<td>22,3,5</td>
<td>0</td>
<td>PFC+</td>
</tr>
<tr>
<td>9</td>
<td>13,4</td>
<td>0</td>
<td>DC+Rect</td>
</tr>
<tr>
<td>10</td>
<td>10,7</td>
<td>0</td>
<td>DC+Rect</td>
</tr>
<tr>
<td>11</td>
<td>2,7</td>
<td>0</td>
<td>DC-Rect</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>DC-Rect</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>13</td>
<td>ACIn1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>15,7</td>
<td>ACIn1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>23,7</td>
<td>ACIn2</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>26,4</td>
<td>ACIn2</td>
</tr>
<tr>
<td>17</td>
<td>7,7</td>
<td>28,8</td>
<td>Therm1</td>
</tr>
<tr>
<td>18</td>
<td>10,7</td>
<td>28,8</td>
<td>Therm2</td>
</tr>
<tr>
<td>19</td>
<td>14,6</td>
<td>28,8</td>
<td>S25</td>
</tr>
<tr>
<td>20</td>
<td>17,6</td>
<td>28,8</td>
<td>G25</td>
</tr>
<tr>
<td>21</td>
<td>20,6</td>
<td>28,8</td>
<td>G27</td>
</tr>
<tr>
<td>22</td>
<td>23,6</td>
<td>28,8</td>
<td>S27</td>
</tr>
<tr>
<td>23</td>
<td>33,2</td>
<td>28,8</td>
<td>G12</td>
</tr>
<tr>
<td>24</td>
<td>36,2</td>
<td>28,8</td>
<td>S12</td>
</tr>
<tr>
<td>25</td>
<td>39,2</td>
<td>28,8</td>
<td>Ph1</td>
</tr>
<tr>
<td>26</td>
<td>41,9</td>
<td>28,8</td>
<td>Ph1</td>
</tr>
<tr>
<td>27</td>
<td>49,9</td>
<td>28,8</td>
<td>S11</td>
</tr>
<tr>
<td>28</td>
<td>52,9</td>
<td>28,8</td>
<td>G11</td>
</tr>
<tr>
<td>29</td>
<td>49,8</td>
<td>15,9</td>
<td>DC.Inv1</td>
</tr>
<tr>
<td>30</td>
<td>49,8</td>
<td>12,9</td>
<td>DC.Inv2</td>
</tr>
<tr>
<td>31</td>
<td>52,9</td>
<td>12,9</td>
<td>DC.Inv2</td>
</tr>
<tr>
<td>32</td>
<td>52,9</td>
<td>15,9</td>
<td>DC.Inv1</td>
</tr>
<tr>
<td>33</td>
<td>41,8</td>
<td>14,4</td>
<td>DC.Inv</td>
</tr>
<tr>
<td>34</td>
<td>39,1</td>
<td>14,4</td>
<td>DC.Inv</td>
</tr>
<tr>
<td>35</td>
<td>29,2</td>
<td>9,2</td>
<td>PFC2-</td>
</tr>
<tr>
<td>36</td>
<td>15</td>
<td>9,2</td>
<td>PFC1-</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>17,4</td>
<td>PFC2n2</td>
</tr>
<tr>
<td>38</td>
<td>16,5</td>
<td>17</td>
<td>PFC1n2</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
<td>20,9</td>
<td>PFC2n1</td>
</tr>
<tr>
<td>40</td>
<td>17</td>
<td>20,5</td>
<td>PFC1n1</td>
</tr>
</tbody>
</table>

Outline

Dimensions of coordinate axes is only offset without tolerance.
Pinout

![Diagram of the pinout of the device.](image)

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>D31, D32, D33, D34</td>
<td>Rectifier</td>
<td>1600 V</td>
<td>35 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>T25, T27</td>
<td>IGBT</td>
<td>650 V</td>
<td>15 A</td>
<td>PFC Switch</td>
<td></td>
</tr>
<tr>
<td>D25, D27</td>
<td>FWD</td>
<td>650 V</td>
<td>15 A</td>
<td>PFC Diode</td>
<td></td>
</tr>
<tr>
<td>D45, D47</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>PFC Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D26, D28</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>Current Transformer Protection Diode</td>
<td></td>
</tr>
<tr>
<td>T11, T12, T13, T14</td>
<td>IGBT</td>
<td>650 V</td>
<td>15 A</td>
<td>H-Bridge Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12, D13, D14</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>H-Bridge Diode</td>
<td></td>
</tr>
<tr>
<td>C1, C2</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>Capacitor (DC)</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ Standard</th>
<th><SPQ Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 1 packages see vincotech.com website.

Package data

Package data for flow 1 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.