Maximum Ratings

$T = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CE}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T = T_{\text{th}}$, $T_s = 80 , ^\circ\text{C}$</td>
<td>104</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_s limited by T_{th}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T = T_{\text{th}}$, $T_s = 80 , ^\circ\text{C}$</td>
<td>145</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{th}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>t_p limited by T_{jmax}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>127</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>104</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>t_p limited by T_{jmax}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>145</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>t_p limited by T_{jmax}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_i = 80 , ^\circ\text{C}$</td>
<td>127</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_i = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40...+125</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{jop})</td>
<td></td>
<td>-40...((T_{\text{max}}) - 25)</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{isol}})</td>
<td>DC Test Voltage* (c_p = 2 , s)</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage (c_p = 1 , \text{min})</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>8,07</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>V_{CE} = V_{CE}</td>
<td>0,0015</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{Cesat}</td>
<td>15</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{ces}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{ces}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{ces}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>520</td>
<td>150</td>
</tr>
<tr>
<td>Thermal</td>
<td>$R_{th(j-s)}$</td>
<td>$h_{junis} = 3,4$ W/mK (PSX)</td>
<td>0,65</td>
<td>K/W</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{off} = 8$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{off} = 8$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{off} = 8$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{off} = 8$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{vad} = 3,8$ μC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{vad} = 7,7$ μC</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>150</td>
<td>1,56</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>650</td>
<td>7,6</td>
<td>µA</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>λ_paste = 3,4 W/mK (PSX)</td>
<td>0,75</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RM}</td>
<td>±15</td>
<td>47</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{RR}</td>
<td>25</td>
<td>132</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>di/dt = 1547 A/µs</td>
<td>3,77</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td>0,39</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$</td>
<td>di/dt</td>
<td>_{max}$</td>
<td>25</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE} = 0$, 0.0015</td>
<td>0.25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CBO}</td>
<td>650</td>
<td>100</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_s</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>520</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>λ_{PSX}</td>
<td>0.65</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>$R_{on} = 8$ Ω</td>
<td>$Q_{rFWD} = 3.7$ μC</td>
</tr>
<tr>
<td>Rise time</td>
<td>τ</td>
<td>$R_{on} = 8$ Ω</td>
<td>$Q_{rFWD} = 8.5$ μC</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{off} = 8$ Ω</td>
<td>$Q_{rFWD} = 7.6$ μC</td>
</tr>
<tr>
<td>Fall time</td>
<td>τ</td>
<td>$R_{off} = 8$ Ω</td>
<td>$Q_{rFWD} = 8.5$ μC</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{rFWD} = 3.7$ μC</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{rFWD} = 8.5$ μC</td>
<td>25</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GE}</td>
<td>V_{GS}</td>
<td>I_{C}</td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_T</td>
<td>150</td>
<td>25</td>
<td>1,56</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>I_{r}</td>
<td>650</td>
<td>25</td>
<td>7,6</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{04-0}</td>
<td>$\lambda_{paste} = 3.4 \text{ W/mK (PSX)}$</td>
<td>0,75</td>
<td>K/W</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{max}</td>
<td>150</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>150</td>
<td>125</td>
<td>137</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>150</td>
<td>25</td>
<td>3,72</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>125</td>
<td>150</td>
<td>0,37</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{\text{max}}$</td>
<td>150</td>
<td>25</td>
<td>851</td>
</tr>
<tr>
<td>Thermistor</td>
<td>R</td>
<td>25</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Deviation of R_{25}</td>
<td>A_{R25}</td>
<td>100</td>
<td>1484</td>
<td>5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>25</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$B_{25(85)}$</td>
<td>25</td>
<td>3962</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25(85)}$</td>
<td>25</td>
<td>4000</td>
<td></td>
</tr>
</tbody>
</table>

Boost Diode

Static

- **Forward voltage**
 - Symbol: V_T
 - Conditions: 150 [V]
 - Values: 25 [V], 1,56 [V], 1,50 [V], 1,48 [V]
- **Reverse leakage current**
 - Symbol: I_r
 - Conditions: 650 [A]
 - Values: 25 [A], 7,6 [µA]

Thermal

- **Thermal resistance junction to sink**
 - Symbol: R_{04-0}
 - Conditions: $\lambda_{paste} = 3,4 \text{ W/mK (PSX)}$
 - Value: 0,75 [K/W]

Dynamic

- **Peak recovery current**
 - Symbol: I_{max}
 - Conditions: 150 [A]
 - Values: 25 [A], 80 [A], 82 [A]
- **Reverse recovery time**
 - Symbol: t_{rr}
 - Conditions: 150 [ns]
 - Values: 25 [ns], 137 [ns], 197 [ns], 229 [ns]
- **Recovered charge**
 - Symbol: Q_r
 - Conditions: 150 [µC]
 - Values: 25 [µC], 3,72 [µC], 7,61 [µC], 8,53 [µC]
- **Reverse recovered energy**
 - Symbol: E_{rec}
 - Conditions: 150 [mWs]
 - Values: 25 [mWs], 0,37 [mWs], 0,75 [mWs], 0,82 [mWs]
- **Peak rate of fall of recovery current**
 - Symbol: $(di/dt)_{\text{max}}$
 - Conditions: 150 [A/µs]
 - Values: 25 [A/µs], 851 [A/µs], 847 [A/µs], 893 [A/µs]

Thermistor

- **Rated resistance**
 - Symbol: R
 - Conditions: 25 [kΩ]
 - Values: 25 [kΩ], 22 [kΩ]
- **Deviation of R_{25}**
 - Symbol: A_{R25}
 - Conditions: 1484 [Ω]
 - Values: 100 [%], 5 [%]
- **Power dissipation**
 - Symbol: P
 - Conditions: 25 [mW]
 - Values: 25 [mW], 5 [mW]
- **Power dissipation constant**
 - Symbol: $B_{25(85)}$
 - Conditions: 25 [mW/K]
 - Values: 25 [mW/K], 3962 [K]
- **B-value**
 - Symbol: $B_{25(85)}$
 - Conditions: 25 [K]
 - Values: 25 [K], 4000 [K]
- **Vincotech NTC Reference**
 - Values: 1 [%]
Buck Switch Characteristics

figure 1. IGBT
Typical output characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE}</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

$\tau_p = 250 \, \mu s$

$V_{CE} = 15 \, V$

$T_j: 125\, ^{\circ}C$

$T_j: 150\, ^{\circ}C$

figure 2. IGBT
Typical output characteristics

$I_C = f(V_{GE})$

<table>
<thead>
<tr>
<th>V_{GE}</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C</td>
<td>150</td>
<td>125</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

$\tau_p = 250 \, \mu s$

$T_j: 150\, ^{\circ}C$

V_{GE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics

$I_C = f(V_{GE})$

<table>
<thead>
<tr>
<th>V_{GE}</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C</td>
<td>150</td>
<td>125</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

$\tau_p = 100 \, \mu s$

$V_{CE} = 10 \, V$

$T_j: 125\, ^{\circ}C$

$T_j: 150\, ^{\circ}C$

figure 4. IGBT
Transient thermal impedance as function of pulse duration

$Z_{th(j-s)} = f(\tau_p)$

<table>
<thead>
<tr>
<th>τ_p</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{th}</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>

$D = \frac{\tau_p}{\tau}$

$R_{th(j-s)} = 0.65 \, K/W$

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13E-01</td>
<td>1.23E-01</td>
</tr>
<tr>
<td>2.91E-01</td>
<td>8.56E-01</td>
</tr>
<tr>
<td>1.38E-01</td>
<td>1.33E-01</td>
</tr>
<tr>
<td>6.68E-02</td>
<td>8.32E-03</td>
</tr>
<tr>
<td>1.32E-02</td>
<td>2.63E-03</td>
</tr>
<tr>
<td>3.21E-02</td>
<td>3.23E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech

19 Sep. 2017 / Revision 1
Buck Switch Characteristics

figure 5. IGBT
Gate voltage vs gate charge
\[V_{GE} = f(Q_G) \]

figure 6. IGBT
Safe operating area
\[I_C = f(V_{CE}) \]

- \(I_C = 150 \) A
- \(V_{JE} = 130 \) V
- \(V_{CE} = 520 \) V
- \(I_C = 150 \) A
- \(V_{JE} = 130 \) V
- \(V_{CE} = 520 \) V

- \(D = \) single pulse
- \(T_j = 80 \) °C
- \(V_{JE} = \pm 15 \) V
- \(T_j = T_{jmax} \)
Buck Diode Characteristics

figure 1. Typical forward characteristics

$I_s = f(V_f)$

<table>
<thead>
<tr>
<th>V_f (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_s (A)</td>
<td>0</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>350</td>
<td>450</td>
</tr>
</tbody>
</table>

$t_p = 250 \mu s$

$25 ^\circ C$

$125 ^\circ C$

$150 ^\circ C$

figure 2. Transient thermal impedance as a function of pulse width

$Z_{th(j-s)} = f(t_p)$

$D = \frac{t_p}{T}$

$R_{th(j-s)} = 0.75 \frac{K}{W}$

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.72E-02</td>
<td>2.85E+00</td>
</tr>
<tr>
<td>1.70E-01</td>
<td>5.28E-01</td>
</tr>
<tr>
<td>3.46E-01</td>
<td>1.08E-01</td>
</tr>
<tr>
<td>8.77E-02</td>
<td>2.58E-02</td>
</tr>
<tr>
<td>4.87E-02</td>
<td>5.55E-03</td>
</tr>
<tr>
<td>2.04E-02</td>
<td>6.12E-04</td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

Figure 1. IGBT
Typical output characteristics
\[I_C = f(V_{GE}) \]

Figure 2. IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

Figure 3. IGBT
Typical transfer characteristics
\[I_C = f(V_{CE}) \]

Figure 4. IGBT
Transient thermal impedance as function of pulse duration
\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 250 \ \mu s \quad 25 \ ^\circ C \]
\[V_{CE} = 15 \ V \quad T_j = 125 \ ^\circ C \]
\[= 150 \ ^\circ C \]
\[7 \ V \ to \ 17 \ V \ in \ steps \ of \ 1 \ V \]

\[t_p = 100 \ \mu s \quad 25 \ ^\circ C \]
\[V_{CE} = 10 \ V \quad T_j = 125 \ ^\circ C \]
\[= 150 \ ^\circ C \]

\[R_{th(j-s)} = 0,65 \ \Omega /W \]

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,13E-01</td>
<td>8,46E-01</td>
</tr>
<tr>
<td>2,91E-01</td>
<td>1,23E-01</td>
</tr>
<tr>
<td>1,38E-01</td>
<td>3,33E-02</td>
</tr>
<tr>
<td>6,68E-02</td>
<td>8,32E-03</td>
</tr>
<tr>
<td>1,32E-02</td>
<td>2,63E-03</td>
</tr>
<tr>
<td>3,21E-02</td>
<td>3,23E-04</td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

figure 5.
Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

figure 6.
Safe operating area

\[I_C = f(V_{CE}) \]

- \(I_C = 150 \) A
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)
Boost Diode Characteristics

Figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^{\circ}C \)
- \(125 \, ^{\circ}C \)
- \(150 \, ^{\circ}C \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,72E-02</td>
<td>2,85E+00</td>
</tr>
<tr>
<td>1,70E-01</td>
<td>5,28E-01</td>
</tr>
<tr>
<td>3,46E-01</td>
<td>1,08E-01</td>
</tr>
<tr>
<td>8,77E-02</td>
<td>2,58E-02</td>
</tr>
<tr>
<td>4,87E-02</td>
<td>5,55E-03</td>
</tr>
<tr>
<td>2,04E-02</td>
<td>6,12E-04</td>
</tr>
</tbody>
</table>

\(D = \frac{t_p}{T} \)

\(R_{th(j-s)} = 0,75 \) K/W
Thermistor Characteristics

Figure 1. Typical NTC characteristic as a function of temperature

\[R = f(T) \]

<table>
<thead>
<tr>
<th>(R) (Ω)</th>
<th>(T) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25000</td>
<td>25</td>
</tr>
<tr>
<td>20000</td>
<td>50</td>
</tr>
<tr>
<td>15000</td>
<td>75</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
</tr>
<tr>
<td>5000</td>
<td>125</td>
</tr>
</tbody>
</table>

NTC-typical temperature characteristic
Buck Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω
- \(I_{C} = 150 \) A

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_{C} = 150 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω
- \(I_{C} = 150 \) A

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \) V
- \(T_J = 125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_{C} = 150 \) A

Copyright Vincotech
Buck Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 150 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, \text{A} \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 150 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, \text{A} \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 150 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, \text{A} \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At
- \(V_{CE} = 150 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(I_C = 150 \, \text{A} \)
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(Ic) \]

\[Q_r = f(R_{gon}) \]

At \(V_{CE} = 150 \, V \), \(T_j = 25 \, ^{\circ}C \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_c = 150 \, A \)

At \(V_{CE} = 150 \, V \), \(T_j = 125 \, ^{\circ}C \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

At \(V_{CE} = 150 \, V \), \(T_j = 25 \, ^{\circ}C \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_c = 150 \, A \)

At \(V_{CE} = 150 \, V \), \(T_j = 125 \, ^{\circ}C \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(Ic) \]

\[I_{RM} = f(R_{gon}) \]

At \(V_{CE} = 150 \, V \), \(T_j = 25 \, ^{\circ}C \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_c = 150 \, A \)

At \(V_{CE} = 150 \, V \), \(T_j = 125 \, ^{\circ}C \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At \(V_{CE} = 150 \, V \), \(T_j = 25 \, ^{\circ}C \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_c = 150 \, A \)

At \(V_{CE} = 150 \, V \), \(T_j = 125 \, ^{\circ}C \)
Buck Switching Characteristics

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_{C})
\]

At \(V_{CE} = 150 \text{ V}, T_j = 25 \text{ °C} \)

At \(V_{CE} = \pm 15 \text{ V}, T_j = 125 \text{ °C} \)

R_{gon} = 8 Ω

I_{C} = 150 A

Figure 13. FWD

Reverse bias safe operating area

I_{C} = f(V_{CE})

At \(V_{CE} = 150 \text{ V}, T_j = 175 \text{ °C} \)

R_{_g} = 8 Ω

Figure 15. IGBT

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{gon})
\]

At \(V_{CE} = 150 \text{ V}, T_j = 25 \text{ °C} \)

At \(V_{CE} = \pm 15 \text{ V}, T_j = 125 \text{ °C} \)

R_{goff} = 8 Ω

Figure 14. FWD
Buck Switching Definitions

General conditions

$T_1 = 125 \, ^\circ\text{C}$

$R_{\text{on}} = 8 \, \Omega$

$R_{\text{off}} = 8 \, \Omega$

Figure 1. Turn-off Switching Waveforms & definition of t_{Eoff}, t_{off} (t_{Eoff} = integrating time for E_{off})

$V_{\text{GE}}(0\%) = -15 \, \text{V}$

$V_{\text{CE}}(0\%) = 15 \, \text{V}$

$I_{\text{C}}(100\%) = 150 \, \text{A}$

$t_{\text{off}} = 0.137 \, \mu\text{s}$

$t_{\text{Eoff}} = 0.245 \, \mu\text{s}$

Figure 2. Turn-on Switching Waveforms & definition of t_{Eon}, t_{on} (t_{Eon} = integrating time for E_{on})

$V_{\text{CE}}(0\%) = 15 \, \text{V}$

$V_{\text{CE}}(100\%) = 15 \, \text{V}$

$I_{\text{C}}(100\%) = 150 \, \text{A}$

$t_{\text{on}} = 0.158 \, \mu\text{s}$

$t_{\text{Eon}} = 0.309 \, \mu\text{s}$

Figure 3. Turn-off Switching Waveforms & definition of I_{C}

$V_{\text{CE}}(10\%) = 150 \, \text{V}$

$I_{\text{C}}(10\%) = 150 \, \text{A}$

$I_{\text{C}}(90\%) = 150 \, \text{A}$

$t_{\text{Eoff}} = 0.030 \, \mu\text{s}$

$t_{\text{off}} = 0.061 \, \mu\text{s}$

Figure 4. Turn-on Switching Waveforms & definition of I_{C}

$V_{\text{CE}}(10\%) = 150 \, \text{V}$

$I_{\text{C}}(10\%) = 150 \, \text{A}$

$I_{\text{C}}(90\%) = 150 \, \text{A}$

$t_{\text{Eon}} = 0.030 \, \mu\text{s}$

$t_{\text{on}} = 0.061 \, \mu\text{s}$
Buck Switching Characteristics

Figure 5. IGBT Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 22.46$ kW
- $E_{off}(100\%) = 1.37$ mJ
- $t_{Eoff} = 0.25$ µs

Figure 6. IGBT Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 22.46$ kW
- $E_{on}(100\%) = 0.77$ mJ
- $t_{Eon} = 0.31$ µs

Figure 7. FWD Turn-off Switching Waveforms & definition of t_{rr}

- $V_{F}(100\%) = 150$ V
- $I_{F}(100\%) = 150$ A
- $I_{rr}(100\%) = -78$ A
- $t_{rr} = 0.182$ µs
Buck Switching Characteristics

Figure 8. FWD
Turn-on Switching Waveforms & definition of t_{Q_r} ($t_{Q_r} =$ integrating time for Q_r)

<table>
<thead>
<tr>
<th>I_f (100%)</th>
<th>150 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_r (100%)</td>
<td>7,66 µC</td>
</tr>
<tr>
<td>t_{Q_r}</td>
<td>0,36 µs</td>
</tr>
</tbody>
</table>

P_{rec} (100%)	22,46 kW
E_{rec} (100%)	0,83 mJ
$t_{E_{rec}}$	0,36 µs

Figure 9. FWD
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$ ($t_{E_{rec}} =$ integrating time for E_{rec})
Boost Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \, V \)
- \(T_J = 125 \, ^\circ C \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, A \)

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \, V \)
- \(T_J = 125 \, ^\circ C \)
- \(R_{goff} = 8 \, \Omega \)
- \(I_C = 150 \, A \)

Figure 3. FWD
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \, V \)
- \(T_J = 125 \, ^\circ C \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, A \)

Figure 4. FWD
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CE} = 150 \, V \)
- \(T_J = 125 \, ^\circ C \)
- \(R_{goff} = 8 \, \Omega \)
- \(I_C = 150 \, A \)
Boost Switching Characteristics

Figure 5. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 150 \, ^\circ C \)
- \(V_{CE} = 150 \, V \)
- \(V_G = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_C = 150 \, A \)

Figure 6. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_J = 150 \, ^\circ C \)
- \(V_{CE} = 150 \, V \)
- \(V_G = \pm 15 \, V \)
- \(I_C = 150 \, A \)
- \(R_{goff} = 8 \, \Omega \)

Figure 7. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(V_{CE} = 150 \, V \), \(25 \, ^\circ C \)
- \(V_G = \pm 15 \, V \), \(T_J = 125 \, ^\circ C \)
- \(R_{pm} = 8 \, \Omega \), \(150 \, ^\circ C \)
- \(I_C = 150 \, A \)

Figure 8. FWD

Typical reverse recovery time as a function of IGBT turn off gate resistor

\[t_{rr} = f(R_{goff}) \]

At

- \(V_{CE} = 150 \, V \), \(25 \, ^\circ C \)
- \(V_G = \pm 15 \, V \), \(T_J = 125 \, ^\circ C \)
- \(I_C = 150 \, A \), \(150 \, ^\circ C \)
Boost Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{CE} = 150 \text{ V} \), \(T_J = 25 \text{ °C} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 8 \Omega \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{CE} = 150 \text{ V} \), \(T_J = 25 \text{ °C} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(I_C = 150 \text{ A} \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{CE} = 150 \text{ V} \), \(T_J = 25 \text{ °C} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 8 \Omega \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
- \(V_{CE} = 150 \text{ V} \), \(T_J = 25 \text{ °C} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(I_C = 150 \text{ A} \)

Copyright Vincotech
Boost Switching Characteristics

Figure 13. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{d i_{F}}{d t}, \frac{d i_{rr}}{d t} = f(I_C)
\]

At

\[V_{CE} = 150 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = 125 ^\circ C \]
\[R_{gon} = 8 \text{ Ω} \]

Figure 14. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{d i_{F}}{d t}, \frac{d i_{rr}}{d t} = f(R_{gon})
\]

At

\[V_{CE} = 150 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = 125 ^\circ C \]
\[R_{gon} = 8 \text{ Ω} \]

Figure 15. IGBT

Reverse bias safe operating area

\[I_C = f(V_{CE})\]

\[T_j = 175 ^\circ C \]
\[R_{ss} = 8 \text{ Ω} \]
\[R_{off} = 8 \text{ Ω} \]
Boost Switching Definitions

General conditions

- \(T_j \) = 125 °C
- \(R_{gon} \) = 8 Ω
- \(R_{goff} \) = 8 Ω

Figure 1. IGBT

Turn-off Switching Waveforms & definition of \(t_{don}, t_{Eoff} \) (integrating time for \(E_{off} \))

- \(V_{CE}(0\%) = -15 \) V
- \(V_{CE}(100\%) = 15 \) V
- \(I_C(100\%) = 149 \) A
- \(t_{don} = 0.128 \) µs
- \(t_{Eoff} = 0.252 \) µs

Figure 2. IGBT

Turn-on Switching Waveforms & definition of \(t_{f}, t_{Eon} \) (integrating time for \(E_{on} \))

- \(V_{CE}(0\%) = 15 \) V
- \(V_{CE}(100\%) = 15 \) V
- \(I_C(100\%) = 149 \) A
- \(t_{f} = 0.148 \) µs
- \(t_{Eon} = 0.387 \) µs

Figure 3. IGBT

Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_{CE}(100\%) = 15 \) V
- \(I_C(100\%) = 149 \) A
- \(t_r = 0.034 \) µs
- \(t_f = 0.060 \) µs

Figure 4. IGBT

Turn-off Switching Waveforms & definition of \(I_C \)

- \(V_{CE}(100\%) = 15 \) V
- \(I_C(100\%) = 149 \) A
- \(t_f = 0.034 \) µs
- \(t_r = 0.060 \) µs

Vincotech
Boost Switching Characteristics

Figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

<table>
<thead>
<tr>
<th>P_{off} (100%)</th>
<th>22.41 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{off} (100%)</td>
<td>1.26 mJ</td>
</tr>
<tr>
<td>t_{Eoff}</td>
<td>0.25 µs</td>
</tr>
</tbody>
</table>

Figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

<table>
<thead>
<tr>
<th>P_{on} (100%)</th>
<th>22.41 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{on} (100%)</td>
<td>0.94 mJ</td>
</tr>
<tr>
<td>t_{Eon}</td>
<td>0.39 µs</td>
</tr>
</tbody>
</table>

Figure 7. FWD
Turn-off Switching Waveforms & definition of t_{rr}

<table>
<thead>
<tr>
<th>V_F (100%)</th>
<th>150 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F (100%)</td>
<td>149 A</td>
</tr>
<tr>
<td>$I_{on}(100%)$</td>
<td>-80 A</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>0.197 µs</td>
</tr>
</tbody>
</table>
Boost Switching Characteristics

Figure 8. FWD
Turn-on Switching Waveforms & definition of \(i_Q \) \((t_Q = \text{integrating time for } Q) \)

- \(i_L \) (100%) = 149 A
- \(Q_r \) (100%) = 7.61 \(\mu \)C
- \(t_Q \) = 0.39 \(\mu \)s

Figure 9. FWD
Turn-on Switching Waveforms & definition of \(i_{\text{FWD}} \) \((t_{\text{FWD}} = \text{integrating time for } E_{\text{rec}}) \)

- \(P_{\text{rec}} \) (100%) = 22.41 kW
- \(E_{\text{rec}} \) (100%) = 0.75 mJ
- \(t_{\text{FWD}} \) = 0.39 \(\mu \)s
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNLNNNNNNNNNNNNNNLTTTTTTVV WWYY</td>
<td>UL VIN</td>
<td>LLLLL</td>
<td>SSSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datamatrix

- **Type & Ver**: TTTTTTW
- **Lot**: LLLLL
- **Serial**: SSSS
- **Date code**: WWYY

Pin Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.2</td>
<td>6.9</td>
<td>Therm1</td>
</tr>
<tr>
<td>2</td>
<td>52.2</td>
<td>0</td>
<td>Therm2</td>
</tr>
<tr>
<td>3</td>
<td>36.2</td>
<td>6.75</td>
<td>S4</td>
</tr>
<tr>
<td>4</td>
<td>33.2</td>
<td>7.9</td>
<td>G14</td>
</tr>
<tr>
<td>5</td>
<td>33.2</td>
<td>4.9</td>
<td>G18</td>
</tr>
<tr>
<td>6</td>
<td>9.2</td>
<td>5.75</td>
<td>S2</td>
</tr>
<tr>
<td>7</td>
<td>6.2</td>
<td>6.9</td>
<td>G12</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>3.9</td>
<td>G16</td>
</tr>
<tr>
<td>9</td>
<td>2.7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>11</td>
<td>2.7</td>
<td>2.7</td>
<td>DC-</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2.7</td>
<td>DC-</td>
</tr>
<tr>
<td>13</td>
<td>2.7</td>
<td>5.4</td>
<td>DC-</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>5.4</td>
<td>DC-</td>
</tr>
<tr>
<td>15</td>
<td>2.7</td>
<td>12.75</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>12.75</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>2.7</td>
<td>15.45</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>15.45</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>2.7</td>
<td>22.8</td>
<td>DC+</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>22.8</td>
<td>DC+</td>
</tr>
<tr>
<td>21</td>
<td>2.7</td>
<td>25.5</td>
<td>DC+</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>25.5</td>
<td>DC+</td>
</tr>
<tr>
<td>23</td>
<td>2.7</td>
<td>28.2</td>
<td>DC+</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>28.2</td>
<td>DC+</td>
</tr>
<tr>
<td>25</td>
<td>18.3</td>
<td>22.45</td>
<td>S1</td>
</tr>
<tr>
<td>26</td>
<td>21.3</td>
<td>21.3</td>
<td>G15</td>
</tr>
<tr>
<td>27</td>
<td>21.3</td>
<td>24.3</td>
<td>G11</td>
</tr>
<tr>
<td>28</td>
<td>43</td>
<td>22.15</td>
<td>S3</td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>21</td>
<td>G17</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>24</td>
<td>G13</td>
</tr>
<tr>
<td>31</td>
<td>52.2</td>
<td>20.1</td>
<td>Ph</td>
</tr>
<tr>
<td>32</td>
<td>49.5</td>
<td>22.8</td>
<td>Ph</td>
</tr>
<tr>
<td>33</td>
<td>52.2</td>
<td>22.8</td>
<td>Ph</td>
</tr>
<tr>
<td>34</td>
<td>49.5</td>
<td>25.5</td>
<td>Ph</td>
</tr>
<tr>
<td>35</td>
<td>52.2</td>
<td>25.5</td>
<td>Ph</td>
</tr>
<tr>
<td>36</td>
<td>49.5</td>
<td>28.2</td>
<td>Ph</td>
</tr>
<tr>
<td>37</td>
<td>52.2</td>
<td>28.2</td>
<td>Ph</td>
</tr>
</tbody>
</table>

Outline

- **Ordering Code**: 10-FY07NMB150S5-LE75F08
- **Revision**: 1
- **Date**: 19 Sep. 2017

Vincotech

Copyright Vincotech

29

19 Sep. 2017 / Revision 1
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12, T15, T16</td>
<td>IGBT</td>
<td>650 V</td>
<td>150 A</td>
<td>Buck Switch</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D11, D12, D15, D16</td>
<td>FWD</td>
<td>650 V</td>
<td>150 A</td>
<td>Buck Diode</td>
<td>Parallel devices. Values apply to complete device.</td>
</tr>
<tr>
<td>T13, T14, T17, T18</td>
<td>IGBT</td>
<td>650 V</td>
<td>150 A</td>
<td>Boost Switch</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D13, D14, D17, D18</td>
<td>FWD</td>
<td>650 V</td>
<td>150 A</td>
<td>Boost Diode</td>
<td>Parallel devices. Values apply to complete device.</td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 1 packages see vincotech.com website.

Package data

Package data for flow 1 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.