Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CE}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>104</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>limited by $T_{j\text{max}}$</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{D}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>145</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^{\circ}\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F_{RM}}$</td>
<td>t_{f} limited by $T_{j_{max}}$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>127</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>128</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>$I_{CE_{RM}}$</td>
<td>t_{f} limited by $T_{j_{max}}$</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>133</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>85</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F_{RM}}$</td>
<td>t_{f} limited by $T_{j_{max}}$</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>122</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Sw.Inv.Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>85</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F_{RM}}$</td>
<td>t_{f} limited by $T_{j_{max}}$</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{max}}$, $T_i = 80 , ^{\circ}\text{C}$</td>
<td>122</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_i = 25 \, ^\circ\text{C} \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td></td>
<td>-40...+125</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-40...((T_{\text{max}}) - 25)</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{isol}})</td>
<td>DC Test Voltage* (t_s = 2 , \text{s})</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage (t_o = 1 , \text{min})</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>7,92</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>GE</sub></td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GS</sub></td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>CE</sub></td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>DS</sub></td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>F</sub></td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>C</sub></td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>D</sub></td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>F</sub></td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>j</sub></td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buck Switch

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V<sub>thG</sub></td>
<td>V<sub>GE</sub> = V<sub>CE</sub></td>
<td>0.0015</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V<sub>CEsat</sub></td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I<sub> CES</sub></td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I<sub> GES</sub></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r<sub>i</sub></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub> G</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C<sub> C</sub></td>
<td>f = 1 MHz</td>
<td>0</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub> r</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q<sub> g</sub></td>
<td>15</td>
<td>520</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R<sub>th(j-s)</sub></td>
<td>phase-change material</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ = 3.4 W/mK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>t<sub>d(on)</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Rise time</td>
<td>t<sub>r</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t<sub>d(off)</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Fall time</td>
<td>t<sub>f</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E<sub>on</sub></td>
<td>θ<sub>θθ</sub> = 3.3 μC</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>θ<sub>θθθθ</sub> = 6.8 μC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ<sub>θθθθ</sub> = 7.8 μC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E<sub>off</sub></td>
<td>θ<sub>θθ</sub> = 3.3 μC</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>θ<sub>θθθθ</sub> = 6.8 μC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ<sub>θθθθ</sub> = 7.8 μC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>150</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td>650</td>
<td>25</td>
<td>7,6</td>
</tr>
</tbody>
</table>

Thermal

| Thermal resistance junction to sink | $R_{th(j-s)}$ | phase-change material $\lambda = 3,4 \text{ W/mK}$ | 0,75 | K/W |

Dynamic

Peak recovery current	I_{RRM}	$di/dt = 7165 \text{ A/µs}$	25	125	150	124	158	167	A
Reverse recovery time	t_{rr}	$di/dt = 8521 \text{ A/µs}$	25	125	150	44	74	85	ns
Recovered charge	Q_r	$di/dt = 7698 \text{ A/µs}$	25	125	150	3,349	6,779	7,785	µC
Reverse recovered energy	E_{rec}	$di/dt = 7165 \text{ A/µs}$	25	125	150	0,870	1,722	1,922	mWs
Peak rate of fall of recovery current	$(di/dt)_{max}$	$di/dt = 8521 \text{ A/µs}$	25	125	150	3889	3024	3127	A/µs
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GS} [V] V_{GS} [V] I_{G} [A] I_{D} [A] T_{J} [°C]</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Boost Switch</td>
<td>Static</td>
<td>$V_{GE(th)}$</td>
<td>0,002</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>none</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>520</td>
<td>75</td>
</tr>
<tr>
<td>Thermal</td>
<td>phase-change material</td>
<td>$R_{th(j-s)} = 3,4 \text{ W/mK}$</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Dynamic</td>
<td>$R_{off} = 4 \Omega$</td>
<td>25</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{off} = 4 \Omega$</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{RMS} = 4,3 \mu C$</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_I</td>
<td>100</td>
<td>1,77</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>1,2</td>
<td>µA</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material $\lambda = 3,4 \text{ W/mK}$</td>
<td>0,78</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{rr}</td>
<td>-15</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>350</td>
<td>107</td>
<td>A</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>25</td>
<td>4,327</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td>1,157</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(dI/dt)_{\text{bus}}$</td>
<td>25</td>
<td>5512</td>
<td>A/µs</td>
</tr>
<tr>
<td>Boost Sw.Inv.Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_I</td>
<td>100</td>
<td>1,77</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>1,2</td>
<td>µA</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material $\lambda = 3,4 \text{ W/mK}$</td>
<td>0,78</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Deviation of R_{25}</td>
<td>$\Delta R/R_{25}$</td>
<td>$R_{250} = 1484 , \Omega$</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/50)}$</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>3962</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>4000</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buck Switch Characteristics

Figure 1. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

\[t_p = 250 \mu s \quad 25 \, ^\circ C \]

\[V_{CE} = 15 \, V \quad 125 \, ^\circ C \]

\[V_{CE} = 150 \, ^\circ C \]

Figure 2. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

\[t_p = 250 \mu s \quad 25 \, ^\circ C \]

\[V_{GE} = 15 \, V \quad 125 \, ^\circ C \]

\[T_j = 150 \, ^\circ C \]

\[V_{GE} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 3. IGBT Typical transfer characteristics

\[I_C = f(V_{GE}) \]

\[t_p = 100 \mu s \quad 25 \, ^\circ C \]

\[V_{CE} = 10 \, V \quad 125 \, ^\circ C \]

\[V_{CE} \text{ from 10 V to 5 V in steps of 1 V} \]

Figure 4. IGBT Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

\[D = t_p / \tau \]

\[R_{th(j-s)} = 0,65 \quad \text{K/W} \]

IGBT thermal model values

\[R \text{ (K/W)} \quad \tau \text{ (s)} \]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,13E-01</td>
<td>8,66E-01</td>
</tr>
<tr>
<td>2,91E-01</td>
<td>1,23E-01</td>
</tr>
<tr>
<td>1,38E-01</td>
<td>3,33E-02</td>
</tr>
<tr>
<td>6,68E-02</td>
<td>8,32E-03</td>
</tr>
<tr>
<td>1,32E-02</td>
<td>2,63E-03</td>
</tr>
<tr>
<td>3,21E-02</td>
<td>3,23E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Buck Switch Characteristics

Figure 5. Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

- \(I_C = 150 \) A
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{jmax} \)

Figure 6. Safe operating area

\[I_C = f(V_{CE}) \]
Buck Diode Characteristics

Typical forward characteristics

\[I_f = f(V_f) \]

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^{\circ}C \)
- \(125 \, ^{\circ}C \)
- \(150 \, ^{\circ}C \)

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R (K/W))</th>
<th>(\tau \ (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,88E-02</td>
<td>7,46E+00</td>
</tr>
<tr>
<td>7,02E-02</td>
<td>1,27E+00</td>
</tr>
<tr>
<td>1,95E-01</td>
<td>2,04E-01</td>
</tr>
<tr>
<td>2,65E-01</td>
<td>6,33E-02</td>
</tr>
<tr>
<td>1,21E-01</td>
<td>1,27E-02</td>
</tr>
<tr>
<td>3,39E-02</td>
<td>3,05E-03</td>
</tr>
<tr>
<td>3,36E-02</td>
<td>3,74E-04</td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

Figure 1: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 2: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 3: IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4: IGBT
Transient Thermal Impedance as function of Pulse duration
$Z_{th(j-s)} = f(t_p)$

$t_p = 250 \mu s$
$V_{CE} = 15 V$
$T_j: 25^\circ C$
$T_j: 125^\circ C$
$T_j: 150^\circ C$

V_{GE} from 7 V to 17 V in steps of 1 V

$t_p = 100 \mu s$
$V_{CE} = 10 V$
$T_j: 25^\circ C$
$T_j: 125^\circ C$
$T_j: 150^\circ C$

$D = \frac{t_p}{T}$

$R_{th(j-s)} = 0.72 K/W$

IGBT thermal model values
$R (K/W) \quad \tau (s)$
$1.29E-01 \quad 2.09E+00$
$1.33E-01 \quad 4.46E-01$
$3.21E-01 \quad 8.45E-02$
$6.42E-02 \quad 2.97E-02$
$5.12E-02 \quad 7.88E-03$
$1.68E-02 \quad 1.62E-03$
Boost Switch Characteristics

Figure 5. Gate voltage vs Gate charge

\[V_{GE} = f(Q_G) \]

- $I_C = 150$ A
- $D = \text{single pulse}$
- $T_s = 80$ °C
- $V_{CE} = \pm 15$ V
- $T_j = T_{jmax}$

Figure 6. Safe operating area

\[I_C = f(V_{CE}) \]

- $V_{GE} = 130$ V
- $V_{CE} = 520$ V
Boost Diode Characteristics

Figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

Typical forward characteristics

- **\(I_F = f(V_F) \)**
- **\(t_p = 250 \, \mu s \)**
- **\(T_j = 25 \, ^\circ C \)**
- **\(T_j = 150 \, ^\circ C \)**

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,76E-02</td>
<td>5,42E+00</td>
</tr>
<tr>
<td>8,79E-02</td>
<td>1,09E+00</td>
</tr>
<tr>
<td>2,14E-01</td>
<td>1,59E-01</td>
</tr>
<tr>
<td>2,31E-01</td>
<td>4,95E-02</td>
</tr>
<tr>
<td>1,16E-01</td>
<td>1,05E-02</td>
</tr>
<tr>
<td>3,20E-02</td>
<td>2,39E-03</td>
</tr>
<tr>
<td>4,19E-02</td>
<td>4,10E-04</td>
</tr>
</tbody>
</table>

Notes:
- \(D = \frac{t_p}{\tau} \)
- \(R_{th(j-s)} = 0,78 \, \text{K/W} \)
Boost Sw.Inv.Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

\[Z_{th(j-s)} = f(t_p) \]

Typical forward characteristics

- Forward voltage \(V_F \)
- Forward current \(I_F \)
- Thermal impedance \(Z_{th} \)

Transient thermal impedance as a function of pulse width

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 0.78 \, \text{K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{(K/W)})</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.76E-02</td>
<td>5.42E+00</td>
</tr>
<tr>
<td>8.79E-02</td>
<td>1.09E+00</td>
</tr>
<tr>
<td>2.14E-01</td>
<td>1.59E-01</td>
</tr>
<tr>
<td>2.31E-01</td>
<td>4.95E-02</td>
</tr>
<tr>
<td>1.16E-01</td>
<td>1.05E-02</td>
</tr>
<tr>
<td>3.20E-02</td>
<td>2.39E-03</td>
</tr>
<tr>
<td>4.19E-02</td>
<td>4.10E-04</td>
</tr>
</tbody>
</table>

\(R_{th(j-s)} \) is the thermal resistance in Kelvin per Watt.
NTC Characteristics

Figure 1. Typical NTC characteristic as a function of temperature

\[R = f(T) \]

<table>
<thead>
<tr>
<th>(R) (Ω)</th>
<th>25000</th>
<th>20000</th>
<th>15000</th>
<th>10000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) (°C)</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
</tr>
</tbody>
</table>
Buck Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(R_{gon} = 2 \) Ω

With an inductive load at 125 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(R_{gon} = 2 \) Ω

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(I_c = 90 \) A

With an inductive load at 125 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(I_c = 90 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(R_{gon} = 2 \) Ω

With an inductive load at 125 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(R_{gon} = 2 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(I_c = 90 \) A

With an inductive load at 125 °C
- \(V_{CC} = 350 \) V
- \(V_{GE} = +15/-5 \) V
- \(I_c = 90 \) A
Buck Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

Figure 6. IGBT
Typical switching times as a function of gate resistor

Figure 7. FWD
Typical reverse recovery time as a function of collector current

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

With an inductive load at
- $T_j = 150 \, ^\circ C$
- $V_{DC} = 350 \, V$
- $V_{GE} = +15/-5 \, V$
- $R_{gon} = 2 \, \Omega$
- $I_C = 90 \, A$

With an inductive load at
- $T_j = 150 \, ^\circ C$
- $V_{DC} = 350 \, V$
- $V_{GE} = +15/-5 \, V$
- $I_t = 90 \, A$

At
- $V_{DC} = 350 \, V$
- $V_{GE} = +15/-5 \, V$
- $T_j = 125 \, ^\circ C$
- $R_{gon} = 2 \, \Omega$
- $I_C = 90 \, A$

At
- $V_{DC} = 350 \, V$
- $V_{GE} = +15/-5 \, V$
- $T_j = 125 \, ^\circ C$
- $R_{gon} = 2 \, \Omega$
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/\text{V} \)
- \(R_{gon} = 2 \Omega \)
- \(T_j = 25 \text{ °C} \)
- \(T_j = 125 \text{ °C} \)
- \(I_C = 90 \text{ A} \)
- \(T_j = 150 \text{ °C} \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/\text{V} \)
- \(R_{gon} = 2 \Omega \)
- \(T_j = 25 \text{ °C} \)
- \(T_j = 125 \text{ °C} \)
- \(I_C = 90 \text{ A} \)
- \(T_j = 150 \text{ °C} \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/\text{V} \)
- \(R_{gon} = 2 \Omega \)
- \(T_j = 25 \text{ °C} \)
- \(T_j = 125 \text{ °C} \)
- \(T_j = 150 \text{ °C} \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/\text{V} \)
- \(R_{gon} = 2 \Omega \)
- \(T_j = 25 \text{ °C} \)
- \(T_j = 125 \text{ °C} \)
- \(T_j = 150 \text{ °C} \)
Buck Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{d^2i_F}{dt^2}, \frac{d^2i_{rr}}{dt^2} = f(I_C) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/-5 \text{ V} \)
- \(R_{gon} = 2 \text{ Ω} \)
- \(I_C = 90 \text{ A} \)

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn-on gate resistor
\[\frac{d^2i_F}{dt^2}, \frac{d^2i_{rr}}{dt^2} = f(R_{gon}) \]

At
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = +15/-5 \text{ V} \)
- \(I_C = 90 \text{ A} \)
- \(R_{gon} = 2 \text{ Ω} \)

Figure 15. IGBT
Reverse bias safe operating area
\[I_C = f(V_{CE}) \]

At
- \(T_J = 175 \text{ °C} \)
- \(R_{gs} = 2 \text{ Ω} \)
- \(R_{ps} = 2 \text{ Ω} \)
Buck Switching Definitions

General conditions
- \(V \) = 125 °C
- \(R_{\text{on}} \) = 2 Ω
- \(R_{\text{off}} \) = 2 Ω

Figure 1. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}}, t_{\text{Eoff}} \) (integrating time for \(E_{\text{off}} \))

- \(V_{\text{CE}}(0\%) = 0 \) V
- \(V_{\text{CE}}(100\%) = 20 \) V
- \(I_{\text{C}}(100\%) = 89 \) A
- \(t_{\text{doff}} = 0.170 \) μs
- \(t_{\text{Eoff}} = 0.254 \) μs

Figure 2. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}}, t_{\text{Eon}} \) (integrating time for \(E_{\text{on}} \))

- \(V_{\text{CE}}(0\%) = 0 \) V
- \(V_{\text{CE}}(100\%) = 20 \) V
- \(I_{\text{C}}(100\%) = 89 \) A
- \(t_{\text{don}} = 0.050 \) μs
- \(t_{\text{Eon}} = 0.104 \) μs

Figure 3. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{f}}, t_{\text{r}} \)

- \(V_{\text{CE}}(100\%) = 350 \) V
- \(I_{\text{C}}(100\%) = 89 \) A
- \(t_{\text{f}} = 0.019 \) μs

Figure 4. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{f}}, t_{\text{r}} \)

- \(V_{\text{CE}}(100\%) = 350 \) V
- \(I_{\text{C}}(100\%) = 89 \) A
- \(t_{\text{r}} = 0.010 \) μs
Buck Switching Characteristics

Figure 5. IGBT Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 31.31$ kW
- $E_{off}(100\%) = 1.56$ mJ
- $t_{Eoff} = 0.25$ μs

Figure 6. IGBT Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 31.31$ kW
- $E_{on}(100\%) = 0.61$ mJ
- $t_{Eon} = 0.10$ μs

Figure 7. FWD Turn-off Switching Waveforms & definition of t_{rr}

- $V_{F}(100\%) = 350$ V
- $I_{F}(100\%) = 89$ A
- $I_{Fmax}(100\%) = -158$ A
- $t_{rr} = 0.074$ μs
Buck Switching Characteristics

Figure 8. FWD

Turn-on Switching Waveforms & definition of t_{Qr} (t_{Qr} = integrating time for Q_r)

$I_F(100\%) = 89$ A

$Q_r(100\%) = 6.78$ μC

$t_{Qr} = 0.15$ μs

Figure 9. FWD

Turn-on Switching Waveforms & definition of t_{Erec} (t_{Erec} = integrating time for E_{rec})

$P_{rec}(100\%) = 31.31$ kW

$E_{rec}(100\%) = 1.72$ mJ

$t_{Erec} = 0.15$ μs
Boost Switching Characteristics

Figure 1. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 ^\circ C \)
- \(V_{GE} = \pm 15 \) V
- \(I_C = 89 \) A
- \(R_{gon} = 4 \Omega \)

Figure 2. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 ^\circ C \)
- \(V_{GE} = \pm 15 \) V
- \(I_C = 89 \) A
- \(R_{goff} = 4 \Omega \)

Figure 3. FWD

Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 ^\circ C \)
- \(V_{GE} = \pm 15 \) V
- \(I_C = 89 \) A
- \(R_{gon} = 4 \Omega \)

Figure 4. FWD

Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 350 \) V
- \(T_J = 125 ^\circ C \)
- \(V_{GE} = \pm 15 \) V
- \(I_C = 89 \) A
- \(R_{goff} = 4 \Omega \)
Boost Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 150 \, ^\circ C \)
- \(V_{IC} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 89 \, A \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_J = 150 \, ^\circ C \)
- \(V_{IC} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 89 \, A \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(V_{IC} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(T_J = 25 \, ^\circ C \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 89 \, A \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(V_{IC} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(T_J = 25 \, ^\circ C \)
- \(I_C = 89 \, A \)
- \(R_{gon} = 4 \, \Omega \)
Boost Switching Characteristics

Figure 9.
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

- \(V_{CE} = 350 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(I_{C} = 89 \, \text{A} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 10.
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

- \(V_{CE} = 350 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(I_{C} = 89 \, \text{A} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 11.
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

- \(V_{CE} = 350 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(I_{C} = 89 \, \text{A} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 12.
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

- \(V_{CE} = 350 \, \text{V} \)
- \(T_j = 25 \, ^\circ\text{C} \)
- \(I_{C} = 89 \, \text{A} \)
- \(R_{gon} = 4 \, \Omega \)
Boost Switching Characteristics

Figure 13.
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
d_i/dt, d_{r}/dt = f(I_C)
\]

Figure 14.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
d_i/dt, d_{r}/dt = f(R_{gon})
\]

Figure 15.
Reverse bias safe operating area
\[
I_C = f(V_{CE})
\]
Boost Switching Definitions

Figure 1. IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -15$ V
- $V_{CE}(0\%) = 350$ V
- $I_C(0\%) = 89$ A
- $t_{\text{doff}} = 0.349$ μs
- $t_{\text{Eoff}} = 0.892$ μs

Figure 2. IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{CE}(100\%) = -15$ V
- $V_{CE}(100\%) = 350$ V
- $I_C(100\%) = 89$ A
- $t_{\text{don}} = 0.184$ μs
- $t_{\text{Eon}} = 0.273$ μs

Figure 3. IGBT
Turn-off Switching Waveforms & definition of I_C

- $V_{CE}(100\%) = 350$ V
- $I_C(10\%) = 89$ A
- $t_{\text{f}} = 0.083$ μs

Figure 4. IGBT
Turn-on Switching Waveforms & definition of I_C

- $V_{CE}(100\%) = 350$ V
- $I_C(10\%) = 89$ A
- $t_r = 0.012$ μs
Boost Switching Characteristics

Figure 5. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100%) = 31.19$ kW
- $E_{on}(100%) = 0.61$ mJ
- $t_{Eon} = 0.27$ μs

Figure 6. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100%) = 31.19$ kW
- $E_{off}(100%) = 6.30$ mJ
- $t_{Eoff} = 0.89$ μs

Figure 7. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{F}(100%) = 350$ V
- $I_{F}(100%) = 89$ A
- $I_{RRM}(100%) = -132$ A
- $t_{rr} = 0.184$ μs
Boost Switching Characteristics

Figure 8. FWD
*Turn-on Switching Waveforms & definition of \(t_{Qr} \) (\(t_{Qr} \) = integrating time for \(Q_r \))

- \(I_F \) (100%) = 89 A
- \(Q_r \) (100%) = 8.48 μC
- \(t_{Qr} \) = 0.42 μs

Figure 9. FWD
*Turn-on Switching Waveforms & definition of \(t_{Erec} \) (\(t_{Erec} \) = integrating time for \(E_{rec} \))

- \(P_{rec} \) (100%) = 31.19 kW
- \(E_{rec} \) (100%) = 2.42 mJ
- \(t_{Erec} \) = 0.42 μs
Pinout

- **DC+**
 - Pin 19, 20, 21, 22, 23, 24
- **GND**
 - Pin 15, 16, 17, 18
- **OUT**
 - Pin 31, 32, 33, 34, 35, 36, 37
- **D5**
- **D6**

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-a, T1-b, T4-a, T4-b</td>
<td>IGBT</td>
<td>650 V</td>
<td>150 A</td>
<td>Buck Switch</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D5, D6</td>
<td>FWD</td>
<td>650 V</td>
<td>150 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T2-a, T2-b, T3-a, T3-b</td>
<td>IGBT</td>
<td>650 V</td>
<td>150 A</td>
<td>Boost Switch</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D1, D4</td>
<td>FWD</td>
<td>650 V</td>
<td>200 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D2, D3</td>
<td>FWD</td>
<td>650 V</td>
<td>200 A</td>
<td>Boost Sw.Inv.Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td>650 V</td>
<td>200 A</td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.