flowSOL 1 BI

650V / 41mOhm

Features
- Low inductive 12mm flow1 package
- Booster:
 - Dual boost topology
 - MOSFET 650V/37mOhm + ultrafast FWD
 - Bypass rectifier
- Inverter:
 - Pseudo H-bridge topology
 - MOSFET 650V/41mOhm CFD + ultrafast FWD
 - Integrated DC-capacitors
- Temperature sensor

Target Applications
- Solar Inverter:
 - High efficient transformer-less solar inverter with bipolar modulation

Types
- 10-FY07BIA041MF-M528E68

Bypass Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit 1</th>
<th>Value 1</th>
<th>Unit 2</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>$V_{(RSM)}$</td>
<td>V</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>$I_{(FAC)}$</td>
<td>DC current</td>
<td>$T_{j}=80^\circ C$</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_{c}=80^\circ C$</td>
<td>55</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>$I_{(FSM)}$</td>
<td>$I_{p}=10\text{ms}$</td>
<td>$T_{j}=25^\circ C$</td>
<td>370</td>
<td>A</td>
</tr>
<tr>
<td>I_2t-value</td>
<td>i_{2t}</td>
<td>$A\cdot s$</td>
<td>370</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>$P_{(Diode)}$</td>
<td>$T_{j}=T_{j,\text{max}}$</td>
<td>$T_{j}=80^\circ C$</td>
<td>50</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_{c}=80^\circ C$</td>
<td>76</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,\text{max}}$</td>
<td>°C</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Input Boost MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value 1</th>
<th>Unit 2</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source breakdown voltage</td>
<td>$V_{(DS)}$</td>
<td>V</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_D</td>
<td>$T_{j}=T_{j,\text{max}}$</td>
<td>$T_{j}=80^\circ C$</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_{c}=80^\circ C$</td>
<td>42</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>$I_{(pMax)}$</td>
<td>i_{p} limited by $T_{j,\text{max}}$</td>
<td></td>
<td>297</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>$P_{(Diode)}$</td>
<td>$T_{j}=T_{j,\text{max}}$</td>
<td>$T_{j}=80^\circ C$</td>
<td>105</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_{c}=80^\circ C$</td>
<td>159</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>$V_{(GS)}$</td>
<td>V</td>
<td>±20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,\text{max}}$</td>
<td>°C</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
Pseudo H-Bridge MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source breakdown voltage VDS</td>
<td></td>
<td>650 V</td>
</tr>
<tr>
<td>DC drain current I_D</td>
<td>Tj=Tjmax, Tc=80°C</td>
<td>35 A</td>
</tr>
<tr>
<td>Pulsed drain current I_D</td>
<td>Tc=25°C</td>
<td>255 A</td>
</tr>
<tr>
<td>Power dissipation P_D</td>
<td>Tj=Tjmax, Tc=80°C</td>
<td>111 W</td>
</tr>
<tr>
<td>Gate-source peak voltage Vgs</td>
<td></td>
<td>±20 V</td>
</tr>
<tr>
<td>Maximum Junction Temperature Tj,max</td>
<td></td>
<td>150 °C</td>
</tr>
</tbody>
</table>

Pseudo H-Bridge Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage V_FRM</td>
<td>Tj=25°C</td>
<td>650 V</td>
</tr>
<tr>
<td>DC forward current I_F</td>
<td>Tj=Tjmax, Tc=80°C</td>
<td>27 A</td>
</tr>
<tr>
<td>Repetitive peak forward current I_PWM</td>
<td>Tc=80°C</td>
<td>180 A</td>
</tr>
<tr>
<td>Power dissipation P_PWM</td>
<td>Tj=Tjmax, Tc=80°C</td>
<td>49 W</td>
</tr>
<tr>
<td>Maximum Junction Temperature Tj,max</td>
<td></td>
<td>175 °C</td>
</tr>
</tbody>
</table>

DC link Capacitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max DC voltage V_MAX</td>
<td>Tc=25°C</td>
<td>630 V</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T_range</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature T_as</td>
<td></td>
<td>-40…+125</td>
</tr>
<tr>
<td>Operation temperature under switching condition T_op</td>
<td></td>
<td>-40…+(Tjmax - 25)</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage V_in</td>
<td>4000 V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>min 12,7 mm</td>
</tr>
<tr>
<td>Clearance</td>
<td>min 12,7 mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Boost MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static drain to source ON resistance</td>
<td>(R_{\text{ds(on)}})</td>
<td>10</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>(V_{\text{G(th)}})</td>
<td>0.0033</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{\text{gs}})</td>
<td>20</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{\text{ds}})</td>
<td>0</td>
<td>650</td>
<td>2000</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>(t_{\text{on}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_{\text{r}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>(t_{\text{off}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{\text{f}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{\text{on}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{\text{off}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_{\text{g}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{\text{gs}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{\text{gd}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{\text{iss}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{\text{oss}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{\text{thJH}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Input Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_{\text{ce}})</td>
<td>30</td>
<td>2.45</td>
<td>2.03</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{\text{f}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>(I_{\text{rm}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{\text{r}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>(Q_{\text{r}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{\text{r}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\frac{d</td>
<td>\text{rec}</td>
<td>}{dt})</td>
<td>10</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{\text{thJH}})</td>
<td>10</td>
<td>400</td>
<td>30</td>
</tr>
</tbody>
</table>

Note: All values are at specific operating conditions and are subject to change with variations in input conditions.
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo H-Bridge MOSFET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static drain to source ON resistance</td>
<td></td>
<td>R_{on}</td>
<td>2.0</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td></td>
<td>V_{G(th)}</td>
<td>-0.1</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td></td>
<td>t_{on}</td>
<td>100</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td></td>
<td>t_{off}</td>
<td>100</td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>t_r</td>
<td>100</td>
</tr>
<tr>
<td>Fall time</td>
<td></td>
<td>t_f</td>
<td>100</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td></td>
<td>E_{on}</td>
<td>100</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td></td>
<td>E_{off}</td>
<td>100</td>
</tr>
<tr>
<td>Total gate charge</td>
<td></td>
<td>Q_{g}</td>
<td>100</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td></td>
<td>Q_{gs}</td>
<td>100</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td></td>
<td>Q_{gd}</td>
<td>100</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td>C_{in}</td>
<td>100</td>
</tr>
<tr>
<td>Output capacitance</td>
<td></td>
<td>C_{out}</td>
<td>100</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td></td>
<td>R_{th,CH}</td>
<td>0.63</td>
</tr>
<tr>
<td>Pseudo H-Bridge Diode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td></td>
<td>V_{F}</td>
<td>2.46</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td></td>
<td>t_{off}</td>
<td>100</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td></td>
<td>t_r</td>
<td>100</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td></td>
<td>Q_{R}</td>
<td>100</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td></td>
<td>t_{off}</td>
<td>100</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td></td>
<td>E_{rec}</td>
<td>100</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td></td>
<td>R_{th,CH}</td>
<td>1.94</td>
</tr>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C value</td>
<td></td>
<td>C</td>
<td>47</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td></td>
<td>R</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td></td>
<td>ΔR/R</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>P</td>
<td>100</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td></td>
<td>B_{(25)}</td>
<td>3960</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>
Pseudo H-Bridge

Figure 1 MOSFET
Typical output characteristics
$IC = f(V_{CE})$

At
$t_p = 250 \ \mu s$
$T_j = 25 °C$
V_{GE} from 0 V to 20 V in steps of 2 V

Figure 2 MOSFET
Typical output characteristics
$IC = f(V_{CE})$

At
$t_p = 250 \ \mu s$
$T_j = 125 °C$
V_{CE} from 0 V to 20 V in steps of 2 V

Figure 3 MOSFET
Typical transfer characteristics
$IC = f(V_{GE})$

At
$t_p = 250 \ \mu s$
$V_{CE} = 10 V$

Figure 4 FWD
Typical diode forward current as a function of forward voltage
$IF = f(V_F)$

At
$t_p = 250 \ \mu s$
$T_j = T_j_{max}-25°C$

Copyright by Vincotech
Pseudo H-Bridge

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 10 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)
- \(R_{goff} = 2 \, \Omega \)

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 10 \, \text{V} \)
- \(I_C = 30 \, \text{A} \)

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 10 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 10 \, \text{V} \)
- \(I_C = 30 \, \text{A} \)
Pseudo H-Bridge

Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_j = 125 \, ^\circ C$
$V_{CE} = 400 \, V$
$V_{GE} = 10 \, V$
$R_{gon} = 2 \, \Omega$
$R_{goff} = 2 \, \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_G)$

With an inductive load at
$T_j = 125 \, ^\circ C$
$V_{CE} = 400 \, V$
$V_{GE} = 10 \, V$
$I_C = 30 \, A$

Figure 11
Typical reverse recovery time as a function of collector current
$trr = f(I_C)$

At
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 400 \, V$
$V_{GE} = 10 \, V$
$R_{gon} = 2 \, \Omega$

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
$trr = f(R_{gon})$

At
$T_j = 25/125 \, ^\circ C$
$V_R = 400 \, V$
$I_R = 30 \, A$
$V_{GE} = 10 \, V$
Pseudo H-Bridge

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 400 \) V
 - \(V_{GE} = 10 \) V
 - \(R_{gon} = 2 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_{GE} = 10 \) V
 - \(I_F = 30 \) A
 - \(V_{GE} = 400 \) V

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 400 \) V
 - \(V_{GE} = 10 \) V
 - \(R_{gon} = 2 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- At
 - \(T_j = 25/125 \) °C
 - \(V_{GE} = 10 \) V
 - \(I_F = 30 \) A
 - \(V_{GE} = 400 \) V
Pseudo H-Bridge

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 2 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At

- \(T_j = 25/125 \) °C
- \(V_{GE} = 10 \) V
- \(I_F = 30 \) A
- \(V_{GE} = 10 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 0.63 \) KW

Figure 20
FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 1.94 \) KW

IGBT thermal model values

\[
\begin{array}{|c|c|}
\hline
R (C/W) & \text{Tau (s)} \\
0.04 & 5.1E+00 \\
0.08 & 1.0E+00 \\
0.30 & 2.1E-01 \\
0.14 & 8.6E-02 \\
0.03 & 1.3E-02 \\
0.02 & 1.4E-03 \\
\hline
\end{array}
\]

FWD thermal model values

\[
\begin{array}{|c|c|}
\hline
R (C/W) & \text{Tau (s)} \\
0.05 & 6.0E+00 \\
0.14 & 8.1E-01 \\
0.72 & 1.4E-01 \\
0.42 & 4.5E-02 \\
0.33 & 1.0E-02 \\
0.19 & 1.8E-03 \\
\hline
\end{array}
\]

Copyright by Vincotech
Pseudo H-Bridge

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

<table>
<thead>
<tr>
<th>TH (°C)</th>
<th>Ptot (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
</tbody>
</table>

At
\[T_j = 150 \ °C \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

<table>
<thead>
<tr>
<th>TH (°C)</th>
<th>IC (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

At
\[T_j = 150 \ °C \]
\[V_{GE} = 15 \ V \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

<table>
<thead>
<tr>
<th>TH (°C)</th>
<th>Ptot (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

At
\[T_j = 175 \ °C \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

<table>
<thead>
<tr>
<th>TH (°C)</th>
<th>IF (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

At
\[T_j = 175 \ °C \]
Figure 25: MOSFET Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_h = 80 \, ^\circ\text{C} \]
\[V_{GE} = 15 \, \text{V} \]
\[T_j = T_{\text{max}} \, ^\circ\text{C} \]

Figure 26: Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
\[I_C = 50 \, \text{A} \]
Figure 1 BOOST MOSFET
Typical output characteristics
\(I_d = f(V_{GS}) \)

At
\[t_p = 250 \, \mu s \]
\[T_j = 25 \, ^\circ C \]
\[V_{GS} \text{ from } 3 \text{ V to } 13 \text{ V in steps of } 1 \text{ V} \]

Figure 2 BOOST MOSFET
Typical output characteristics
\(I_d = f(V_{GS}) \)

At
\[t_p = 250 \, \mu s \]
\[T_j = 125 \, ^\circ C \]
\[V_{GS} \text{ from } 3 \text{ V to } 13 \text{ V in steps of } 1 \text{ V} \]

Figure 3 BOOST MOSFET
Typical transfer characteristics
\(I_d = f(V_{GS}) \)

At
\[t_p = 250 \, \mu s \]
\[T_j = T_j_{\text{max}} - 25 \, ^\circ C \]
\[V_{GS} = 10 \, \text{ V} \]

Figure 4 BOOST FWD
Typical diode forward current as a function of forward voltage
\(I_d = f(V_f) \)

At
\[t_p = 250 \, \mu s \]
Figure 5
BOOST MOSFET
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 ^\circ C \)
- \(V_{DS} = 400 \text{ V} \)
- \(V_{GS} = 10 \text{ V} \)
- \(R_{gon} = 2 \Omega \)
- \(R_{goff} = 2 \Omega \)

Figure 6
BOOST MOSFET
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 ^\circ C \)
- \(V_{DS} = 400 \text{ V} \)
- \(V_{GS} = 10 \text{ V} \)
- \(I_B = 30 \text{ A} \)

Figure 7
BOOST FWD
Typical reverse recovery energy loss as a function of collector (drain) current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 ^\circ C \)
- \(V_{DS} = 400 \text{ V} \)
- \(V_{GS} = 10 \text{ V} \)
- \(R_{gon} = 2 \Omega \)
- \(R_{goff} = 2 \Omega \)

Figure 8
BOOST FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 ^\circ C \)
- \(V_{DS} = 400 \text{ V} \)
- \(V_{GS} = 10 \text{ V} \)
- \(I_B = 30 \text{ A} \)
Figure 9

BOOST MOSFET

Typical switching times as a function of collector current

$t = f(I_c)$

With an inductive load at

$T_j = 125 \, ^\circ C$

$V_{DS} = 400 \, V$

$V_{GS} = 10 \, V$

$R_{gon} = 2 \, \Omega$

$R_{goff} = 2 \, \Omega$

Figure 10

BOOST MOSFET

Typical switching times as a function of gate resistor

$t = f(R_g)$

With an inductive load at

$T_j = 125 \, ^\circ C$

$V_{DS} = 400 \, V$

$V_{GS} = 10 \, V$

$I_c = 30 \, A$

Figure 11

BOOST FWD

Typical reverse recovery time as a function of collector current

$\tau_{rr} = f(I_c)$

At

$T_j = 25/125 \, ^\circ C$

$V_{DS} = 400 \, V$

$V_{GS} = 10 \, V$

$R_{gon} = 2 \, \Omega$

Figure 12

BOOST FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

$\tau_{rr} = f(R_{gon})$

At

$T_j = 25/125 \, ^\circ C$

$V_{BB} = 400 \, V$

$I_c = 30 \, A$

$V_{GS} = 10 \, V$
Figure 13 **BOOST FWD**
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GS} = 10 \) V
- \(R_{gon} = 2 \) Ω

Figure 14 **BOOST FWD**
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(I_F = 30 \) A
- \(V_{GS} = 10 \) V

Figure 15 **BOOST FWD**
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GS} = 10 \) V
- \(R_{gon} = 2 \) Ω

Figure 16 **BOOST FWD**
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(I_F = 30 \) A
- \(V_{GS} = 10 \) V
INPUT BOOST

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{di_0}{dt}, \frac{dr}{dt} = f(I_c) \)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{di_0}{dt}, \frac{dr}{dt} = f(R_{gon}) \)

Figure 19
IGBT/MOSFET transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

Table: IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.56E-02</td>
<td>5.26E+00</td>
</tr>
<tr>
<td>8.98E-02</td>
<td>9.94E-01</td>
</tr>
<tr>
<td>3.76E-01</td>
<td>1.88E-01</td>
</tr>
<tr>
<td>1.04E-01</td>
<td>6.08E-02</td>
</tr>
<tr>
<td>3.76E-02</td>
<td>1.20E-02</td>
</tr>
<tr>
<td>2.56E-02</td>
<td>9.33E-04</td>
</tr>
</tbody>
</table>

Table: FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.65E-02</td>
<td>5.96E+00</td>
</tr>
<tr>
<td>1.38E-01</td>
<td>8.06E-01</td>
</tr>
<tr>
<td>7.19E-01</td>
<td>1.42E-01</td>
</tr>
<tr>
<td>4.17E-01</td>
<td>4.54E-02</td>
</tr>
<tr>
<td>3.26E-01</td>
<td>1.02E-02</td>
</tr>
<tr>
<td>1.85E-01</td>
<td>1.84E-03</td>
</tr>
</tbody>
</table>

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 2 \) Ω

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GS} = 10 \) V

Copyright by Vincotech
INPUT BOOST

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

At
\[T_j = 150 \, ^{\circ}\text{C} \]

Figure 22
Collector/Drain current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 150 \, ^{\circ}\text{C} \]
\[V_{GS} = 10 \, \text{V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

At
\[T_j = 175 \, ^{\circ}\text{C} \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^{\circ}\text{C} \]
Figure 25
Safe operating area as a function of drain-source voltage

\[I_D = f(V_{DS}) \]

- **At**
 - \(D = \) single pulse
 - \(T_s = 80 \) °C
 - \(V_{GS} = 10 \) V
 - \(T_j = T_{j\text{max}} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

- **At**
 - \(I_D = 50 \) A

INPUT BOOST

Copyright by Vincotech
Bypass Diode

Figure 1
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

\[T_j = 250 \, ^\circ\text{C} \quad T_j = 25\, ^\circ\text{C} \]

\[t_p = 250 \mu\text{s} \]

Figure 2
Diode transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{thJH} = 1.397 \, \text{K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

\[D = 0.5 \quad 0.2 \quad 0.1 \quad 0.05 \quad 0.02 \quad 0.01 \quad 0.005 \quad 0.000 \]

Figure 4
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

\[T_j = 150 \, ^\circ\text{C} \]

\[T_j = T_{jmax} - 25 \, ^\circ\text{C} \]
Figure 1

Thermistor

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions H-Bridge MOSFET

General conditions

- $T_J = 125 \degree C$
- $R_{on} = 2 \Omega$
- $R_{off} = 2 \Omega$

Figure 1
Turn-off Switching Waveforms & definition of t_{off}, t_{off}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE}(0%)$</td>
<td>0 V</td>
</tr>
<tr>
<td>$V_{GE}(100%)$</td>
<td>10 V</td>
</tr>
<tr>
<td>$V_C(100%)$</td>
<td>400 V</td>
</tr>
<tr>
<td>$I_C(100%)$</td>
<td>30 A</td>
</tr>
<tr>
<td>$t_{off} = t_{on}$</td>
<td>0.15 μs</td>
</tr>
<tr>
<td>$t_{off} = t_{on}$</td>
<td>0.18 μs</td>
</tr>
</tbody>
</table>

Figure 2
Turn-on Switching Waveforms & definition of t_{on}, t_{on}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE}(0%)$</td>
<td>0 V</td>
</tr>
<tr>
<td>$V_{GE}(100%)$</td>
<td>10 V</td>
</tr>
<tr>
<td>$V_C(100%)$</td>
<td>400 V</td>
</tr>
<tr>
<td>$I_C(100%)$</td>
<td>30 A</td>
</tr>
<tr>
<td>$t_{on} = t_{off}$</td>
<td>0.04 μs</td>
</tr>
<tr>
<td>$t_{on} = t_{off}$</td>
<td>0.07 μs</td>
</tr>
</tbody>
</table>

Figure 3
Turn-off Switching Waveforms & definition of t_f

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_C(100%)$</td>
<td>400 V</td>
</tr>
<tr>
<td>$I_C(100%)$</td>
<td>30 A</td>
</tr>
<tr>
<td>$t_f = t_{on}$</td>
<td>0.00 μs</td>
</tr>
</tbody>
</table>

Figure 4
Turn-on Switching Waveforms & definition of t_r

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_C(100%)$</td>
<td>400 V</td>
</tr>
<tr>
<td>$I_C(100%)$</td>
<td>30 A</td>
</tr>
<tr>
<td>$t_r = t_{off}$</td>
<td>0.01 μs</td>
</tr>
</tbody>
</table>
Switching Definitions H-Bridge MOSFET

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 12.15$ kW
- $E_{off}(100\%) = 0.05$ mJ
- $t_{Eoff} = 0.18$ μs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 12.15$ kW
- $E_{on}(100\%) = 0.31$ mJ
- $t_{Eon} = 0.07$ μs

Figure 7
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = 0$ V
- $V_{GEon} = 10$ V
- $V_{d}(100\%) = 400$ V
- $I_{d}(100\%) = 30$ A
- $Q_{g} = 186.04$ nC

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d}(100\%) = 400$ V
- $I_{d}(100\%) = 30$ A
- $I_{RRM}(100\%) = -61$ A
- $t_{rr} = 0.04$ μs
Switching Definitions H-Bridge MOSFET

Figure 9

Turn-on Switching Waveforms & definition of t_{Qrr}

t_{Qrr} = integrating time for Q_{rr}

t_{Erec} = integrating time for E_{rec}

$I_d (100\%) = 30$ A
$Q_{rr} (100\%) = 1.29$ μC
$t_{Qrr} = 0.09$ μs
$E_{rec} (100\%) = 0.35$ mJ
$t_{Erec} = 0.09$ μs

Figure 10

Turn-on Switching Waveforms & definition of t_{Erec}

$P_{inc} (100\%) = 12.15$ kW
$E_{rec} (100\%) = 0.35$ mJ
$t_{Erec} = 0.09$ μs
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FY07BIA041MF-M528E68</td>
<td>M528E68</td>
<td>M528E68</td>
</tr>
</tbody>
</table>

Outline

Tolerance of pinpositions ±0,5mm at the end of pins
Dimension of coordinate axis is only offset without tolerance
PCB cutouts and holes see in handling instructions document

Pinout

Pins 3,4,9,12 are not connected.
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.