flowSOL 1 BI

600V/50A

Features
- Low inductive 12mm flow1 package
- Booster:
 - Dual boost topology
 - High-speed IGBT + ultrafast FWD
- Inverter:
 - H-bridge topology
 - High-speed IGBT + ultrafast FWD
- Integrated DC-capacitors
- Temperature sensor

Target Applications
- Solar Inverter:
 - Transformer-less solar inverter with bipolar modulation with high efficiency/cost ratio
 - Primary of a transformer based solar inverter with resonant switching

Types
- 10-FY06BIA050SG-M523E18

Maximum Ratings

\[T_J = 25°C, \text{ unless otherwise specified} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode</td>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>(I_{FAX})</td>
<td>DC current (T_J = 80°C) (T_C = 80°C)</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{FSM})</td>
<td>(t_S = 10\text{ms}) (T_J = 25°C)</td>
<td>370</td>
<td>A</td>
</tr>
<tr>
<td>I2r-value</td>
<td>(I_{2r})</td>
<td></td>
<td>370</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{DI})</td>
<td>(T_J = T_{J\max}) (T_J = 80°C) (T_C = 80°C)</td>
<td>46</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{J\max})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Input Boost IGBT</td>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_J = T_{J\max}) (T_J = 80°C) (T_C = 80°C)</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{2PC})</td>
<td>(I_S) limited by (T_{J\max})</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{Di})</td>
<td>(T_J = T_{J\max}) (T_J = 80°C) (T_C = 80°C)</td>
<td>83</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>(\pm 20)</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{SC})</td>
<td>(V_{CE} = 15\text{V}) (T_J = 150°C)</td>
<td>5</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{J\max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMS}</td>
<td>T_j=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>T_j=T_{max}</td>
<td>19</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>I_f limited by T_{max}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{IR}</td>
<td>T_j=T_{max}</td>
<td>39</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>47</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Input Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMS}</td>
<td>T_j=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>T_j=T_{max}</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>I_f limited by T_{max}</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{IR}</td>
<td>T_j=T_{max}</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>H-Bridge IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>T_j=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_c</td>
<td>T_j=T_{max}</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>52</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPulse}</td>
<td>I_{p} limited by T_{max}</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{IR}</td>
<td>T_j=T_{max}</td>
<td>83</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>126</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>T_j≤150°C</td>
<td>5</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>V_{CC}=15V</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>H-Bridge Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMS}</td>
<td>T_j=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>T_j=T_{max}</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>31</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>I_f limited by T_{max}</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{IR}</td>
<td>T_j=T_{max}</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_c=80°C</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.DC voltage</td>
<td>V_{MAX}</td>
<td>T_c=25°C</td>
<td>630</td>
<td>V</td>
</tr>
</tbody>
</table>

Copyright by Vincotech

Revision: 1
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125°C</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+(Tjmax - 25) °C</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>$t=2s$ DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>V_D=15 V</td>
<td>9.89</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>V_T</td>
<td>V_D=15 V</td>
<td>9.89</td>
<td>V</td>
</tr>
<tr>
<td>Slope resistance</td>
<td>r_s</td>
<td>V_D=15 V</td>
<td>9.89</td>
<td>V</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>V_D=15 V</td>
<td>9.89</td>
<td>mA</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R_{th}</td>
<td>Thermal grease thickness=50um $k=1 \text{ W/mK}$</td>
<td>1.53</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Input Boost IGBT

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>I_{COS}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td>none</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{GSS}</td>
<td>$f=1\text{MHz}$</td>
<td>50</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th}</td>
<td>Thermal grease thickness=50um $k=1 \text{ W/mK}$</td>
<td>1.15</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Input Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>$f=1\text{MHz}$</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th}</td>
<td>Thermal grease thickness=50um $k=1 \text{ W/mK}$</td>
<td>2.44</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Input Boost Diode

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>$f=1\text{MHz}$</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>pA</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{peak}</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>pA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_r</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>pC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt</td>
<td>$f=1\text{MHz}$</td>
<td>100</td>
<td>A/µs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th}</td>
<td>Thermal grease thickness=50um $k=1 \text{ W/mK}$</td>
<td>1.76</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

H-Bridge IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE}=V_{CE}$</td>
<td>0,008</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CBO}</td>
<td>15 0 50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>1,94</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{DSS}</td>
<td>0 600</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>0,04</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{DSS}</td>
<td>20</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>100</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>±15 400 50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>22</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>13</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>±15</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>204</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>±15 400 50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>4</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>$T_j=25{}^\circ{}C$</td>
<td>0,61</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>$T_j=25{}^\circ{}C$</td>
<td>0,89</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{ins}</td>
<td>f=1MHz</td>
<td>0 25</td>
<td>$T_j=25{}^\circ{}C$</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rtr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>±15 480 50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>310</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50um $k=1\ W/\text{mK}$</td>
<td></td>
<td>1,15</td>
</tr>
</tbody>
</table>

H-Bridge Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td>50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>2,33</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>2,01</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>75</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>±15 400 50</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>29</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>E_{rec}</td>
<td></td>
<td>$T_j=25{}^\circ{}C$</td>
<td>14960</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td>$T_j=25{}^\circ{}C$</td>
<td>10800</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50um $k=1\ W/\text{mK}$</td>
<td></td>
<td>1,76</td>
</tr>
</tbody>
</table>

DC link Capacitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C value</td>
<td>C</td>
<td></td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>$\Delta R/R$</td>
<td>$R_{100+1486}\ \Omega$</td>
<td></td>
<td>±5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>Tol. ±3%</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/10}$</td>
<td>Tol. ±3%</td>
<td>$T_j=25{}^\circ{}C$</td>
<td>3996</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright by Vincotech
H-Bridge

Figure 1
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_J = 25 \ ^\circ C \]
\[V_{GE} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 2
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_J = 125 \ ^\circ C \]
\[V_{GE} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 3
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

Figure 4
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
\[t_p = 250 \ \mu s \]
\[V_{CE} = 10 \ \text{V} \]

Copyright by Vincotech
Figure 5 IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GF} = 15 \text{ V} \]
\[R_{on} = 4 \text{ } \Omega \]
\[R_{off} = 4 \text{ } \Omega \]

Figure 6 IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GF} = 15 \text{ V} \]
\[I_C = 50 \text{ A} \]

Figure 7 FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GF} = 15 \text{ V} \]
\[R_{on} = 4 \text{ } \Omega \]

Figure 8 FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GF} = 15 \text{ V} \]
\[I_C = 50 \text{ A} \]
H-Bridge

Figure 9
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_J = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 10
Typical switching times as a function of gate resistor
\(t = f(R_G) \)

With an inductive load at
- \(T_J = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 15 \, \text{V} \)
- \(I_C = 50 \, \text{A} \)

Figure 11
Typical reverse recovery time as a function of collector current
\(t_r = f(I_C) \)

At
- \(T_J = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_r = f(R_{gon}) \)

At
- \(T_J = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(I_C = 50 \, \text{A} \)
- \(V_{GE} = 15 \, \text{V} \)
H-Bridge

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current](image)

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of gate resistor](image)

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{GE} = 15 \, V \]
\[I_F = 50 \, A \]
\[V_{GE} = 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current](image)

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of gate resistor](image)

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{GE} = 15 \, V \]
\[I_F = 50 \, A \]
\[V_{GE} = 15 \, V \]
H-Bridge

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

- **At**
 - \(T_j = 25/125 \, ^\circ C\)
 - \(V_{CE} = 400 \, V\)
 - \(V_{GE} = 15 \, V\)
 - \(R_{gon} = 4 \, \Omega\)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

- **At**
 - \(T_j = 25/125 \, ^\circ C\)
 - \(V_{CE} = 400 \, V\)
 - \(I_F = 50 \, A\)
 - \(V_{GE} = 15 \, V\)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[
Z_{thJH} = f(t_p)
\]

- **At**
 - \(D = \frac{t_p}{T}\)
 - \(R_{thJH} = 1.15 \, K/W\)

Figure 20
FWD transient thermal impedance as a function of pulse width
\[
Z_{thJH} = f(t_p)
\]

- **At**
 - \(D = \frac{t_p}{T}\)
 - \(R_{thJH} = 1.76 \, K/W\)

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>2,0E+00</td>
</tr>
<tr>
<td>0.33</td>
<td>3,2E-01</td>
</tr>
<tr>
<td>0.51</td>
<td>9,4E-02</td>
</tr>
<tr>
<td>0.16</td>
<td>1,5E-02</td>
</tr>
<tr>
<td>0.05</td>
<td>2,3E-03</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>4,8E+00</td>
</tr>
<tr>
<td>0.17</td>
<td>7,6E-01</td>
</tr>
<tr>
<td>0.70</td>
<td>1,6E-01</td>
</tr>
<tr>
<td>0.53</td>
<td>5,1E-02</td>
</tr>
<tr>
<td>0.19</td>
<td>1,1E-02</td>
</tr>
<tr>
<td>0.12</td>
<td>1,6E-03</td>
</tr>
</tbody>
</table>
H-Bridge

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \degree C \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \text{ V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \degree C \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \degree C \]
H-Bridge

Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_h = 80 \degree C \]
\[V_{GE} = 15 \text{ V} \]
\[T_j = T_{j\text{max}} \degree C \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

120V
480V

At
\[I_C = 50 \text{ A} \]

Figure 1

Typical output characteristics

\[I_D = f(V_{DS}) \]

At

\[t_p = 250 \ \text{ms} \]

\[T_j = 25 \ ^\circ \text{C} \]

\[V_{GS} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 2

Typical output characteristics

\[I_D = f(V_{GS}) \]

At

\[t_p = 250 \ \text{ms} \]

\[T_j = 125 \ ^\circ \text{C} \]

\[V_{GS} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 3

Typical transfer characteristics

\[I_D = f(V_{GS}) \]

At

\[t_p = 250 \ \text{ms} \]

\[V_{GS} = 10 \ \text{V} \]

Figure 4

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \ \text{ms} \]
Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(I_b = 50 \) A

Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(I_b = 50 \) A
INPUT BOOST

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]
\[R_{goff} = 4 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[I_C = 50 \, A \]

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_D = 400 \, V \]
\[I_C = 50 \, A \]
\[V_{GS} = 15 \, V \]

Copyright by Vincotech
Typical reverse recovery charge as a function of collector current

$Q_{rr} = f(I_C)$

At

$T_j = 25/125 \degree C$

$V_{CE} = 400 \, V$

$V_{GS} = 15 \, V$

$R_{gon} = 4 \, \Omega$

Typical reverse recovery current as a function of collector current

$I_{RRM} = f(I_C)$

At

$T_j = 25/125 \degree C$

$V_{CE} = 400 \, V$

$V_{GS} = 15 \, V$

$R_{gon} = 4 \, \Omega$
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(I_F = 50 \) A
- \(V_{GS} = 15 \) V

Figure 19
IGBT/MOSFET transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = t_p / T \)
- \(R_{thJH} = 1.15 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.49E-02</td>
<td>2.03E+00</td>
</tr>
<tr>
<td>3.34E-01</td>
<td>3.24E-01</td>
</tr>
<tr>
<td>5.08E-01</td>
<td>9.38E-02</td>
</tr>
<tr>
<td>1.62E-01</td>
<td>1.49E-02</td>
</tr>
<tr>
<td>4.63E-02</td>
<td>2.34E-03</td>
</tr>
<tr>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = t_p / T \)
- \(R_{thJH} = 1.76 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.96E-02</td>
<td>4.76E+00</td>
</tr>
<tr>
<td>1.66E-01</td>
<td>7.60E-01</td>
</tr>
<tr>
<td>6.99E-01</td>
<td>1.60E-01</td>
</tr>
<tr>
<td>5.26E-01</td>
<td>5.15E-02</td>
</tr>
<tr>
<td>1.89E-01</td>
<td>1.12E-02</td>
</tr>
<tr>
<td>1.23E-01</td>
<td>1.64E-03</td>
</tr>
</tbody>
</table>
Figure 21
BOOST IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
BOOST IGBT
Collector/Drain current as a function of heatsink temperature
\[I_{C} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GS} = 15 \, V \]

Figure 23
BOOST FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ C \]

Figure 24
BOOST FWD
Forward current as a function of heatsink temperature
\[I_{F} = f(T_h) \]

At
\[T_j = 150 \, ^\circ C \]
Figure 25
Safe operating area as a function of drain-source voltage

\[I_D = f(V_{DS}) \]

\[V_{GS} = f(Q_g) \]

At
- single pulse
- \(T_S = 80 \) °C
- \(V_{GS} = 15 \) V
- \(T_J = T_{JMAX} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

At
- \(I_D = 50 \) A

120V
480V
Bypass Diode

Figure 1
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

Figure 2
Diode transient thermal impedance as a function of pulse width
$Z_{thJH} = f(t_p)$

Figure 3
Power dissipation as a function of heatsink temperature
$P_{tot} = f(T_h)$

Figure 4
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

- At $t_p = 250$ µs
- At $D = \frac{t_p}{T}$
 - $R_{thJH} = 1.528$ K/W
- At $T_j = 150$ °C
INP. BOOST INVERSE DIODE

Figure 1
Typical thyristor forward current as a function of forward voltage
\(I_F = f(V_F) \)

At
\[T_j = 250 \text{ °C}, T_j = 25 \text{ °C} \]

Figure 2
Thyristor transient thermal impedance as a function of pulse width
\(Z_{TH} = f(t_p) \)

At
\[D = 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.000 \]
\[R_{TH} = 2.44 \text{ K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature
\(P_{TH} = f(T_{jH}) \)

At
\[T_j = 175 \text{ °C} \]

Figure 4
Forward current as a function of heatsink temperature
\(I_F = f(T_{jH}) \)

At
\[T_j = 175 \text{ °C} \]
Figure 1

Typical NTC characteristic
as a function of temperature

\(R_T = f(T) \)
Switching Definitions H-Bridge IGBT

General conditions

<table>
<thead>
<tr>
<th>T_j</th>
<th>125 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>8 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>

Figure 1 H-Bridge IGBT

Turn-off Switching Waveforms & definition of t_{off}, t_{on}

(t_{off} = integrating time for E_{off})

V_{GE} (0%)	0 V
V_{GE} (100%)	15 V
V_{CE} (100%)	50 A
t_{off}	0.33 ms
t_{on}	0.39 ms

Figure 2 H-Bridge IGBT

Turn-on Switching Waveforms & definition of t_{on}, t_{off}

(t_{on} = integrating time for E_{on})

V_{GE} (0%)	0 V
V_{GE} (100%)	15 V
V_{CE} (100%)	50 A
t_{on}	0.03 ms
t_{off}	0.19 ms

Figure 3 H-Bridge IGBT

Turn-off Switching Waveforms & definition of t

V_{CE} (100%)	400 V
I_C (100%)	50 A
t	0.01 ms

Figure 4 H-Bridge IGBT

Turn-on Switching Waveforms & definition of t

V_{CE} (100%)	400 V
I_C (100%)	50 A
t	0.02 ms
Switching Definitions H-Bridge IGBT

Figure 5

H-Bridge IGBT

Turn-off Switching Waveforms & definition of t\textsubscript{Eoff}

- \(P\textsubscript{off} (100\%) = 19.99 \text{ kW} \)
- \(E\textsubscript{off} (100\%) = 0.80 \text{ mJ} \)
- \(t\textsubscript{Eoff} = 0.39 \text{ \(\mu\)s} \)

Figure 6

H-Bridge IGBT

Turn-on Switching Waveforms & definition of t\textsubscript{Eon}

- \(P\textsubscript{on} (100\%) = 19.99 \text{ kW} \)
- \(E\textsubscript{on} (100\%) = 1.20 \text{ mJ} \)
- \(t\textsubscript{Eon} = 0.19 \text{ \(\mu\)s} \)

Figure 7

H-Bridge IGBT

Gate voltage vs Gate charge (measured)

- \(V\textsubscript{GE off} = 0 \text{ V} \)
- \(V\textsubscript{GE on} = 15 \text{ V} \)
- \(V\textsubscript{G} (100\%) = 400 \text{ V} \)
- \(I\textsubscript{d} (100\%) = 50 \text{ A} \)
- \(Q\textsubscript{g} = 270.72 \text{ nC} \)

Figure 8

H-Bridge FWD

Turn-off Switching Waveforms & definition of \(t\textsubscript{rr} \)

- \(V\textsubscript{d} (100\%) = 400 \text{ V} \)
- \(I\textsubscript{b} (100\%) = 50 \text{ A} \)
- \(I\textsubscript{tota} (100\%) = -56 \text{ A} \)
- \(t\textsubscript{rr} = 0.03 \text{ \(\mu\)s} \)
Switching Definitions H-Bridge IGBT

Figure 9

Turn-on Switching Waveforms & definition of t_{Qrr}

(t_{Qrr} = integrating time for Q_{rr})

![Diagram](image)

I_d (100%) = 50 A

Q_{rr} (100%) = 1.16 %

t_{Qrr} = 0.10 µs

Figure 10

Turn-on Switching Waveforms & definition of t_{Erec}

(t_{Erec} = integrating time for E_{rec})

![Diagram](image)

P_{rec} (100%) = 19.99 kW

E_{rec} (100%) = 0.13 mJ

t_{Erec} = 0.10 µs
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FY06BIA050SG-M523E18</td>
<td>M523E18</td>
<td>M523E18</td>
</tr>
</tbody>
</table>

Outline

- Pins 3, 4, 7, 14 are not connected.
- Pins 27 and 30 have to be connected together.
- Pins 31 and 34 have to be connected together.

Pinout

- Tolerance of pin positions ±0.5mm at the end of pins.
- Dimension of coordinate axis is only offset without tolerance.
- PCB cutouts and holes see in handling instructions document.
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.