流3xMNPC 1

 Features
- 3相混合电压组件拓扑
- 中性点钳位逆变器
- 无功功率能力
- 低电感布局

 Target Applications
- 太阳能逆变器
- UPS

 Types
- 10-FY12M3A040SH-M749F08
- 10-F112M3A040SH-M749F09

Maximum Ratings

$T_J=25^\circ C$, 除非另有说明

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
</table>

Half Bridge IGBT (T1,T4,T5,T8,T9,T12)

Collector-emitter break down voltage	V_{CE}	T_J=Tmax	1200	V	
DC collector current	I_C	T_J=Tmax	T_J=80°C	31	A
Pulsed collector current	I_{PSS}	I_{PSS} limited by T_J=max	120	A	
Power dissipation per IGBT	P_{tot}	T_J=Tmax	T_J=80°C	75	W
Turn off safe operating area	I_C	T_J≤150°C	V_{CE}=V_{CES}	120	A
Short circuit ratings	t_{SC}	T_J≤150°C	V_{CE}=15V	10	μs
Gate-emitter peak voltage	V_{GE}			±20	V
Maximum Junction Temperature	T_J=max			175	°C

Neutral P. FWD (D2,D3,D6,D7,D10,D11)

Peak Repetitive Reverse Voltage	V_{max}		600	V	
DC forward current	I_F	T_J=Tmax	T_J=80°C	18	A
Surge forward current	I_{FSM}	I_{FSM} limited by T_J=max	300	A	
Power dissipation per Diode	P_{tot}	T_J=Tmax	T_J=80°C	30	W
Maximum Junction Temperature	T_J=max			150	°C
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_{J}=T_{max}$</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{Cpulse}</td>
<td>I_C limited by T_{max}</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>37</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>≤ 20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{DC}</td>
<td>$V_{GE}=15V$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>$I_{on max}$</td>
<td>$I_{C E} \leq 600V$ $V_{CE} \leq 150°C$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Half Bridge FWD (D1,D4,D5,D8,D9,D12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_{J}=T_{max}$</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{SGE}</td>
<td>$10 ms, sin 180°, T_J = 150 °C$</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_{J}=T_{max}$</td>
<td>28</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>$-40...+125$</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>$-40...+(T_{J max} - 25)$</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>$I=2s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate-emit threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>± 15</td>
<td>350</td>
<td>28</td>
</tr>
<tr>
<td>collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collector-emitter cut-off current incl. Diode</td>
<td>I_{QCE}</td>
<td>8</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>gate-emitter leakage current</td>
<td>I_{GEL}</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>integrated Gate resistor</td>
<td>$R_{g int}$</td>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>turn-on delay time</td>
<td>t_{det}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rise time</td>
<td>τ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{g off}=8\ \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fall time</td>
<td>τ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>$f=1MHz$</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{riss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>$R_{g off}=8\ \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutral P. FWD (D2,D3,D6,D7,D10,D11)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>τ_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{g off}=8\ \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\frac{di}{dt}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE}=V_{GE(th)}$</td>
<td>$T=25^\circ C$</td>
<td>5.80</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>$T=125^\circ C$</td>
<td>6.5</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td></td>
<td>$T=125^\circ C$</td>
<td>0.00016</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td>$T=125^\circ C$</td>
<td>300</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{goff}=16 \Omega$</td>
<td>$T=25^\circ C$</td>
<td>164</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{goff}=16 \Omega$</td>
<td>$T=125^\circ C$</td>
<td>74</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{gon}=16 \Omega$</td>
<td>$T=25^\circ C$</td>
<td>16</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{gon}=16 \Omega$</td>
<td>$T=125^\circ C$</td>
<td>91</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>0.49</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>$T=125^\circ C$</td>
<td>0.98</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1$MHz</td>
<td>$T=25^\circ C$</td>
<td>108</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>1630</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>50</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gss}</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>167</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>None</td>
<td></td>
<td>2.56</td>
</tr>
</tbody>
</table>

Half Bridge FWD (D1,D4,D5,D8,D9,D12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{d}</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>2.28</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>$T=125^\circ C$</td>
<td>2.39</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rss}</td>
<td>$R_{goff}=16 \Omega$</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td>$R_{goff}=16 \Omega$</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td></td>
<td>1.47</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$di/(rd)_{max}$</td>
<td></td>
<td></td>
<td>2.33</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>3534</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>None</td>
<td></td>
<td>3.36</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>21511</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1486 \Omega$</td>
<td>$T_{c}=100^\circ C$</td>
<td>4.5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$B_{(5,100)}$</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>3.5</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(5,100)}$</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>3884</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(50,100)}$</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>3964</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>
Buck
Half Bridge IGBT and Neutral Point FWD

Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau_p = 250 \mu s$
$T_j = 25^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau_p = 250 \mu s$
$T_j = 125^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$\tau_p = 250 \mu s$
$V_{CE} = 10 V$

copyright Vincotech
Typical switching energy losses
as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \quad ^\circ C \]

\[V_{CE} = 350 \quad V \]

\[V_{GE} = \pm 15 \quad V \]

\[R_{gon} = 8 \quad \Omega \]

\[R_{goff} = 8 \quad \Omega \]

Typical reverse recovery energy loss
as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \quad ^\circ C \]

\[V_{CE} = 350 \quad V \]

\[V_{GE} = \pm 15 \quad V \]

\[I_c = 28 \quad A \]
Buck

Half Bridge IGBT and Neutral Point FWD

Figure 9

Typical switching times as a function of collector current

\[t = f(I_c) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 8 \, \Omega \)
- \(R_{goff} = 8 \, \Omega \)

Figure 10

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 28 \, A \)

Figure 11

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_c) \]

At

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{ggon} = 8 \, \Omega \)

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{OE} = 350 \, V \)
- \(I_V = 28 \, A \)
- \(V_{GEB} = \pm 15 \, V \)
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

Figure 13

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 15

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 28 \) A
- \(V_{GE} = \pm 15 \) V

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

Figure 14

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

Figure 16

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 28 \) A
- \(V_{GE} = \pm 15 \) V
Buck

Half Bridge IGBT and Neutral Point FWD

Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

Figure 19

IGBT transient thermal impedance as a function of pulse width

\[
Z_{th,JH} = f(t_p)
\]

Figure 20

FWD transient thermal impedance as a function of pulse width

\[
Z_{th,JH} = f(t_p)
\]

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>8.2E-01</td>
</tr>
<tr>
<td>0.64</td>
<td>1.3E-01</td>
</tr>
<tr>
<td>0.30</td>
<td>4.8E-02</td>
</tr>
<tr>
<td>0.10</td>
<td>9.3E-03</td>
</tr>
<tr>
<td>0.06</td>
<td>8.0E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>2.4E-00</td>
</tr>
<tr>
<td>0.36</td>
<td>3.0E-01</td>
</tr>
<tr>
<td>1.41</td>
<td>6.5E-02</td>
</tr>
<tr>
<td>0.28</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>0.19</td>
<td>1.6E-03</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175 \degree C \]

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 150 \degree C \]
Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

- **D**: single pulse
- **Th**: \(80 \) °C
- **V_{GE}**: \(\pm 15 \) V
- **T_j**: \(T_{j_{\text{max}}} \) °C

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

Figure 27
Reverse bias safe operating area
\[I_C = f(V_{CE}) \]

- **T_j**: \(T_{j_{\text{max}}}-25 \) °C
- **DC link minus**: DC link plus

Switching mode: 3 level switching
Figure 1: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau_p = 250 \mu s$
$T_j = 25 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 2: IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau_p = 250 \mu s$
$T_j = 125 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3: IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$\tau_p = 250 \mu s$
$V_{CE} = 10 \ V$

Figure 4: FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$\tau_p = 250 \mu s$

$T_j = T_{jmax} - 25 \degree C$
Figure 5 IGBT
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 16 \, \Omega \]
\[I_C = 28 \, \text{A} \]

Figure 6 IGBT
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 28 \, \text{A} \]

Figure 7 FWD
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 16 \, \Omega \]

Figure 8 FWD
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 28 \, \text{A} \]
Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]
With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 16 \, \Omega \]
\[R_{goff} = 16 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]
With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 28 \, A \]

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]
At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 16 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]
At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[I_V = 28 \, A \]
\[V_{GE} = \pm 15 \, V \]
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

\[Q_{rr} \text{ (mC)} \]

\[Q_{rr \; \text{low } T} \]

\[Q_{rr \; \text{high } T} \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\[I_C \text{ (A)} \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \]

At

\[T_j = 25/125 \; ^\circ \text{C} \]

\[V_{CE} = 350 \; \text{V} \]

\[V_{GE} = \pm 15 \; \text{V} \]

\[R_{gon} = 16 \; \Omega \]

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

\[I_{RRM \; \text{low } T} \]

\[I_{RRM \; \text{high } T} \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \]

\[I_C \text{ (A)} \]

\[0 \quad 15 \quad 30 \quad 45 \quad 60 \]

At

\[T_j = 25/125 \; ^\circ \text{C} \]

\[V_{CE} = 350 \; \text{V} \]

\[V_{GE} = \pm 15 \; \text{V} \]

\[I_{F} = 28 \; \text{A} \]

\[V_{GE} = \pm 15 \; \text{V} \]

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

\[I_{RRM \; \text{low } T} \]

\[I_{RRM \; \text{high } T} \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \]

\[R_{gon} \text{ (\Omega)} \]

\[0 \quad 15 \quad 30 \quad 45 \quad 60 \]

At

\[T_j = 25/125 \; ^\circ \text{C} \]

\[V_{CE} = 350 \; \text{V} \]

\[V_{GE} = \pm 15 \; \text{V} \]

\[I_{F} = 28 \; \text{A} \]

\[V_{GE} = \pm 15 \; \text{V} \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = 0.5 \)
- \(0.2 \)
- \(0.1 \)
- \(0.05 \)
- \(0.02 \)
- \(0.01 \)
- \(0.005 \)
- \(0.000 \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>3.0E+00</td>
</tr>
<tr>
<td>0.25</td>
<td>4.8E-01</td>
</tr>
<tr>
<td>1.64</td>
<td>7.9E-02</td>
</tr>
<tr>
<td>0.32</td>
<td>1.9E-02</td>
</tr>
<tr>
<td>0.15</td>
<td>4.2E-03</td>
</tr>
<tr>
<td>0.11</td>
<td>5.1E-04</td>
</tr>
</tbody>
</table>

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 28 \) A
- \(V_{GE} = \pm 15 \) V

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = 0.5 \)
- \(0.2 \)
- \(0.1 \)
- \(0.05 \)
- \(0.02 \)
- \(0.01 \)
- \(0.005 \)
- \(0.000 \)

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>2.6E+00</td>
</tr>
<tr>
<td>0.25</td>
<td>3.8E-01</td>
</tr>
<tr>
<td>1.48</td>
<td>7.2E-02</td>
</tr>
<tr>
<td>0.67</td>
<td>1.8E-02</td>
</tr>
<tr>
<td>0.50</td>
<td>3.4E-03</td>
</tr>
<tr>
<td>0.34</td>
<td>7.0E-04</td>
</tr>
</tbody>
</table>
Power dissipation as a Collector current as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[I_C = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Power dissipation as a Forward current as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GE} = 15 \, \text{V} \]
Figure 1

Typical NTC characteristic as a function of temperature

$R_T = f(T)$
Switching Definitions Neutral Point

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{son}</td>
<td>16 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figure 1: Boost IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

$V_{GE}(0\%) = -15$ V
$V_{GE}(100\%) = 15$ V
$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 28$ A
$t_{doff} = 0.19$ µs
$t_{Eoff} = 0.39$ µs

Figure 2: Boost IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$V_{CE}(0\%) = -15$ V
$V_{CE}(100\%) = 15$ V
$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 28$ A
$t_{don} = 0.11$ µs
$t_{Eon} = 0.26$ µs

Figure 3: Boost IGBT
Turn-off Switching Waveforms & definition of t_f

$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 28$ A
$t_f = 0.09$ µs

Figure 4: Boost IGBT
Turn-on Switching Waveforms & definition of t_r

$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 28$ A
$t_r = 0.02$ µs
Switching Definitions Neutral Point

Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t\textsubscript{Eoff}

- P\textsubscript{off} (100%) = 9.70 kW
- E\textsubscript{off} (100%) = 0.98 mJ
- t\textsubscript{Eoff} = 0.39 \mu s

Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t\textsubscript{Eon}

- P\textsubscript{on} (100%) = 9.70 kW
- E\textsubscript{on} (100%) = 0.66 mJ
- t\textsubscript{Eon} = 0.26 \mu s

Figure 7
Boost IGBT
Gate voltage vs Gate charge (measured)

- V\textsubscript{GEoff} = -15 V
- V\textsubscript{GEon} = 15 V
- V\textsubscript{C} (100%) = 350 V
- I\textsubscript{I} (100%) = 28 A
- Q\textsubscript{g} = 277 nC

Figure 8
Buck FWD
Turn-off Switching Waveforms & definition of t\textsubscript{rr}

- V\textsubscript{f} (100%) = 350 V
- I\textsubscript{f} (100%) = 28 A
- I\textsubscript{f} (100%) = -44 A
- t\textsubscript{rr} = 0.11 \mu s
Switching Definitions Neutral Point

Figure 9 Boost IGBT
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

1. I_{d} (100%) = 28 A
2. Q_{rr} (100%) = 2.73 µC
3. t_{Qrr} = 1.00 µs

Figure 10 Buck FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

1. P_{rec} (100%) = 9.70 kW
2. E_{rec} (100%) = 0.71 mJ
3. t_{Erec} = 1.00 µs

Measurement circuits

Figure 11 Neutral Point stage switching measurement circuit
Switching Definitions Half Bridge

General conditions

\[T_J = 125 \, ^\circ\text{C} \]
\[R_{\text{on}} = 8 \, \Omega \]
\[R_{\text{off}} = 8 \, \Omega \]

Figure 1
Turn-off Switching Waveforms & definition of \(t_{\text{doff}}, t_{\text{Eoff}} \)

\(t_{\text{doff}} \) = integrating time for \(E_{\text{off}} \)

- \(V_{\text{GE}}(0\%) = -15 \, \text{V} \)
- \(V_{\text{GE}}(100\%) = 15 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 28 \, \text{A} \)
- \(t_{\text{Eoff}} = 0.61 \, \mu\text{s} \)
- \(t_{\text{doff}} = 0.22 \, \mu\text{s} \)

Figure 2
Turn-on Switching Waveforms & definition of \(t_{\text{don}}, t_{\text{Eon}} \)

\(t_{\text{Eon}} \) = integrating time for \(E_{\text{on}} \)

- \(V_{\text{GE}}(0\%) = -15 \, \text{V} \)
- \(V_{\text{GE}}(100\%) = 15 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 28 \, \text{A} \)
- \(t_{\text{Eon}} = 0.20 \, \mu\text{s} \)
- \(t_{\text{don}} = 0.07 \, \mu\text{s} \)

Figure 3
Turn-off Switching Waveforms & definition of \(t_{\text{f}} \)

- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 28 \, \text{A} \)
- \(t_{\text{f}} = 0.08 \, \mu\text{s} \)

Figure 4
Turn-on Switching Waveforms & definition of \(t_{\text{r}} \)

- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 28 \, \text{A} \)
- \(t_{\text{r}} = 0.02 \, \mu\text{s} \)

copyright Vincotech
Switching Definitions Half Bridge

Figure 5 Buck IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 9.75 kW
- E_{off} (100%) = 1.16 mJ
- t_{Eoff} = 0.61 µs

Figure 6 Buck IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 9.75 kW
- E_{on} (100%) = 0.52 mJ
- t_{Eon} = 0.20 µs

Figure 7 Buck IGBT
Gate voltage vs Gate charge (measured)

- V_{GEoff} = -15 V
- $I_{\text{d(fitted)}}$ = 299.41 nC

Figure 8 Boost FWD
Turn-off Switching Waveforms & definition of t_{rr}

- V_{GEon} = 15 V
- I_{C1} (1%) = 28 A
- V_{C} (100%) = 350 V
- I_{rr} (100%) = -41 A
- Q_{g} = 299.41 nC
- Q_{g} = 299.41 nC

copyright Vincotech 23
Revision: 3.2
Switching Definitions Half Bridge

Figure 9 Buck IGBT
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Erec} = integrating time for E_{rec})

- $i_s (100\%) = 28$ A
- $Q_{rr} (100\%) = 0.92$ µC
- $t_{Qrr} = 0.08$ µs

Figure 10 Boost FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec} (100\%) = 9.75$ kW
- $E_{rec} (100\%) = 0.12$ mJ
- $t_{Erec} = 0.08$ µs

Measurement circuits

Figure 11 Half Bridge stage switching measurement circuit
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.