10-F106NIA150SA-M136F

flowNPC 1

600V/150A

Features
- Neutral-point-Clamped inverter
- Compact flow1 housing
- Low Inductance Layout

Target Applications
- UPS
- Motor Drive
- Solar inverters

Types
- 10-F106NIA150SA-M136F

Maximum Ratings

* TJ=25°C, unless otherwise specified *

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>VCE</td>
<td>TJ=150°C VCE=15V</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>IC</td>
<td>TJ= Tj,max</td>
<td>109</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ=80°C</td>
<td>144</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>Icpulse</td>
<td>Ic limited by Tj,max</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>Ptot</td>
<td>TJ= Tj,max</td>
<td>166</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ=80°C</td>
<td>251</td>
<td>A</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>VGE</td>
<td>TJ= Tj,max</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>tDC</td>
<td>TJ=150°C VCE=15V</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>VCE</td>
<td></td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj,max</td>
<td>TJ= Tj,max</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>TJ=150°C VCE=VCEES</td>
<td>300</td>
<td>A</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>VRRM</td>
<td>TJ=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>IF</td>
<td>TJ= Tj,max</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ=80°C</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>IRMS</td>
<td>Ic limited by Tj,max</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>Ptot</td>
<td>TJ= Tj,max</td>
<td>74</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ=80°C</td>
<td>112</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td>TJ= Tj,max</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Copyright by Vincotech
Maximum Ratings

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j=T_{max}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=80°C$</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=80°C$</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>$I_{(pul)}$</td>
<td>I_p limited by T_{max}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{int}</td>
<td>$T_j=T_{max}$</td>
<td>151</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j=25°C$</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{CC}=15V$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC}=250°C$</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_j=150°C$</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$V_{CC}=V_{CES}$</td>
<td>300</td>
<td>A</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RM}</td>
<td>$T_j=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{max}$</td>
<td>91</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=80°C$</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>I_p limited by T_{max}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$</td>
<td>123</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_j=80°C$</td>
<td>167</td>
<td></td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RM}</td>
<td>$T_j=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{max}$</td>
<td>98</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=80°C$</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td>I_p limited by T_{max}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$</td>
<td>135</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_j=80°C$</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>$I=2s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td>V_{GE}(T)</td>
<td>VCE=VGE</td>
<td>0.0024</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEUH}</td>
<td>15</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CSS}</td>
<td>0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{g}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>R_{goff}=4 \Omega</td>
<td>4.10</td>
<td>5.92</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>1.01</td>
<td>1.75</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>4.10</td>
<td>5.92</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>f=1MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{ox}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness=50um A,=0.81 W/mK</td>
<td>0.574</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>±15</td>
<td>150</td>
<td>1.2</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RSM}</td>
<td></td>
<td></td>
<td>1.69</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td>R_{goff}=4 \Omega</td>
<td>8.6</td>
<td>13.7</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rec}</td>
<td></td>
<td>4.704</td>
<td>3013</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt</td>
<td></td>
<td>2.30</td>
<td>3.63</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>1.288</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Note: All characteristic values are related to gates of parallel IGBTs connected together.
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{CE}$</td>
<td>0.0024</td>
<td>$T=25^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>15</td>
<td>$T=25^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td></td>
<td>0</td>
<td>$T=25^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td>30</td>
<td>$T=25^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{Gate}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td>15</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{goff}=4$ Ω</td>
<td>±15</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>$f=1$MHz</td>
<td>0</td>
<td>$T=25^\circ C$</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{Ces}</td>
<td></td>
<td>15</td>
<td>$T=25^\circ C$</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gnea}</td>
<td></td>
<td>15</td>
<td>$T=25^\circ C$</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>Thermal grease thickness55um $\lambda = 0.81$ W/mK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_T</td>
<td></td>
<td>150</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>Thermal grease thickness55um $\lambda = 0.81$ W/mK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_T</td>
<td></td>
<td>150</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{cm}</td>
<td></td>
<td>600</td>
<td>$T=25^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{pmax}</td>
<td>$R_{gon}=4$ Ω</td>
<td>±15</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td>15</td>
<td>$T=25^\circ C$, $T=125^\circ C$, $T=150^\circ C$</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$V_{di(max)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>Thermal grease thickness55um $\lambda = 0.81$ W/mK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1486$ Ω</td>
<td></td>
<td>$T=100^\circ C$</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>200</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>$T=25^\circ C$</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>Tol. ±3%</td>
<td>$T=25^\circ C$</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td>Tol. ±3%</td>
<td>$T=25^\circ C$</td>
<td>3996</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1
IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

![Graph](image1)

At
- \(t_p = 250 \, \mu s \)
- \(T_j = 25 \, ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2
IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

![Graph](image2)

At
- \(t_p = 250 \, \mu s \)
- \(T_j = 150 \, ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3
IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

![Graph](image3)

At
- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 10 \, V \)
- \(T_j = T_{jmax} - 25^\circ C \)
- \(T_j = 25^\circ C \)

Figure 4
FRED

Typical diode forward current as a function of forward voltage

\[I_V = f(V_f) \]

![Graph](image4)

At
- \(t_p = 250 \, \mu s \)
Buck

Figure 5
IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{on} = 4 \) Ω
- \(R_{off} = 4 \) Ω

Figure 6
IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 150 \) A

Figure 7
FRED
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{on} = 4 \) Ω

Figure 8
FRED
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 150 \) A
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at

- \(T_j = 150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Typical reverse recovery time as a function of collector current
\[t_r = f(I_C) \]

At

- \(T_j = 25/150 \) °C
- \(V_{CE} = 175 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/150 \degree C \]
\[V_{CE} = 175 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 4 \text{ } \Omega \]

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/150 \degree C \]
\[V_{CE} = 175 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 4 \text{ } \Omega \]
Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{\text{d}I}{\text{d}t}, \frac{\text{d}I_{\text{rec}}}{\text{d}t} = f(I_c)$

\[
\frac{\text{d}I_0}{\text{d}t}, \frac{\text{d}I_{\text{rec}}}{\text{d}t} = f(R_{\text{gon}})
\]

At $T_j = 25/150 \, ^\circ\text{C}$

$V_{CE} = 175 \, V$

$V_{GE} = \pm 15 \, V$

$I_F = 150 \, A$

$R_{\text{gon}} = 4 \, \Omega$

IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

At $D = \frac{t_p}{T}$

$R_{thJH} = 0.574 \, \text{K/W}$

IGBT thermal model values

\[
\begin{array}{ll}
R \ (\text{C/W}) & \text{Tau (s)} \\
0.05 & 4.5E+00 \\
0.10 & 1.0E+00 \\
0.26 & 2.0E-01 \\
0.10 & 6.1E-02 \\
0.05 & 1.3E-02 \\
0.01 & 1.8E-03 \\
\end{array}
\]

FRED transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

At $D = \frac{t_p}{T}$

$R_{thJH} = 1.288 \, \text{K/W}$

FRED thermal model values

\[
\begin{array}{ll}
R \ (\text{C/W}) & \text{Tau (s)} \\
0.07 & 4.9E+00 \\
0.20 & 1.0E+00 \\
0.60 & 2.3E-01 \\
0.28 & 8.0E-02 \\
0.12 & 1.6E-02 \\
0.03 & 1.8E-03 \\
\end{array}
\]

Copyright by Vincotech
Buck

Figure 21 IGBT

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

![Graph showing power dissipation vs. heatsink temperature for IGBT](image)

At

\[T_j = 175 \degree C \]

Figure 22 IGBT

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

![Graph showing collector current vs. heatsink temperature for IGBT](image)

At

\[T_j = 175 \degree C \]

Figure 23 FRED

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

![Graph showing power dissipation vs. heatsink temperature for FRED](image)

At

\[T_j = 175 \degree C \]

Figure 24 FRED

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

![Graph showing forward current vs. heatsink temperature for FRED](image)

At

\[T_j = 175 \degree C \]
Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

At
- \(D = \) single pulse
- \(T_h = 80 \) °C
- \(V_{GE} = \leq 15 \) V
- \(T_J = T_{\text{max}} \) °C

\(V_{CE}(V) \)
\(I_C(A) \)

\(Q_g(nC) \)

\(V_{GE}(V) \)

120V
480V

Copyright by Vincotech
Figure 1
IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph](image)

- $t_p = 250 \ \mu s$
- $T_j = 25 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph](image)

- $t_p = 250 \ \mu s$
- $T_j = 150 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

![Graph](image)

- I_C vs. V_{GE}
- $T_j = 25 \ ^\circ C$
- $T_j = T_{j_{max}} - 25 \ ^\circ C$

Figure 4
FRED
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

![Graph](image)

- I_F vs. V_F
- $T_j = 25 \ ^\circ C$
- $T_j = T_{j_{max}} - 25 \ ^\circ C$

At
- $t_p = 250 \ \mu s$
- $T_j = 25 \ ^\circ C$
- $V_{CE} = 10 \ \text{V}$
Figure 5 IGBT
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{GON} = 4 \, \Omega \)
- \(I_C = 149 \, \text{A} \)

Figure 6 IGBT
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 149 \, \text{A} \)

Figure 7 IGBT
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{GON} = 4 \, \Omega \)

Figure 8 IGBT
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 149 \, \text{A} \)
With an inductive load at
$T_j = 150 \, ^\circ\text{C}$
$V_{CE} = 350 \, \text{V}$
$V_{GE} = \pm 15 \, \text{V}$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

At
$T_j = 25/150 \, ^\circ\text{C}$
$V_{CE} = 350 \, \text{V}$
$V_{GE} = \pm 15 \, \text{V}$
$I_c = 149 \, \text{A}$

Copyright by Vincotech
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_J = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_J = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 149 \) A
- \(V_{GE} = \pm 15 \) V

Boost

- \(Q_{rr} \) = f(\(I_C \))
- \(I_{RRM} \) = f(\(R_{gon} \))

Copyright by Vincotech

15

Revision: 5
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
dI_0/dt, dI_{rec}/dt = f(Ic)
\]

At

- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Boost

IGBT transient thermal impedance as a function of pulse width

\(Z_{thJH} = f(t_p) \)

At

- \(D = \frac{t_p}{T} \)
- \(R_{hJH} = 0,630 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,06</td>
<td>4,3E+00</td>
</tr>
<tr>
<td>0,10</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>0,31</td>
<td>2,2E-01</td>
</tr>
<tr>
<td>0,10</td>
<td>6,2E-02</td>
</tr>
<tr>
<td>0,05</td>
<td>1,2E-02</td>
</tr>
<tr>
<td>0,02</td>
<td>1,3E-03</td>
</tr>
</tbody>
</table>

FRED transient thermal impedance as a function of pulse width

\(Z_{thJH} = f(t_p) \)

At

- \(D = \frac{t_p}{T} \)
- \(R_{hJH} = 0,701 \) K/W

FRED thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,07</td>
<td>3,3E+00</td>
</tr>
<tr>
<td>0,17</td>
<td>4,3E-01</td>
</tr>
<tr>
<td>0,34</td>
<td>9,8E-02</td>
</tr>
<tr>
<td>0,10</td>
<td>1,4E-02</td>
</tr>
<tr>
<td>0,03</td>
<td>1,2E-03</td>
</tr>
</tbody>
</table>
Boost

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

![Power dissipation graph](image)

At
\[T_j = 175 \degree \text{C} \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

![Collector current graph](image)

At
\[T_j = 175 \degree \text{C} \]

Figure 23
FRED
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

![Power dissipation graph](image)

At
\[T_j = 175 \degree \text{C} \]

Figure 24
FRED
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

![Forward current graph](image)

At
\[T_j = 175 \degree \text{C} \]
Boost

Figure 25

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

![Graph showing diode forward current vs. voltage](image)

At $t_p = 250 \ \mu s$

Figure 26

Diode transient thermal impedance as a function of pulse width

$Z_{thJH} = f(t_p)$

![Graph showing thermal impedance vs. pulse width](image)

$D = \frac{t_p}{T}$

$R_{thJH} = 0.771 \ \text{K/W}$

Figure 27

Power dissipation as a function of heatsink temperature

$P_{tot} = f(T_h)$

![Graph showing power dissipation vs. heatsink temperature](image)

At $T_j = 175 \ ^\circ C$

Figure 28

Forward current as a function of heatsink temperature

$I_F = f(T_h)$

![Graph showing forward current vs. heatsink temperature](image)

At $T_j = 175 \ ^\circ C$
Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]

Figure 2

Typical NTC resistance values

\[R(T) = R_{25} \cdot e^{\left(\frac{-R_{25}}{100} \left(\frac{1}{T_{25}} - \frac{1}{T}
ight)\right)} \] [Ω]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R (Ω)</th>
<th>T (°C)</th>
<th>R (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55</td>
<td>3006477</td>
<td>30</td>
<td>17035</td>
</tr>
<tr>
<td>-50</td>
<td>1923972</td>
<td>40</td>
<td>11534</td>
</tr>
<tr>
<td>-45</td>
<td>1346473</td>
<td>50</td>
<td>7758</td>
</tr>
<tr>
<td>-40</td>
<td>924876</td>
<td>60</td>
<td>6497</td>
</tr>
<tr>
<td>-35</td>
<td>645112</td>
<td>70</td>
<td>5376</td>
</tr>
<tr>
<td>-30</td>
<td>456764</td>
<td>80</td>
<td>4503</td>
</tr>
<tr>
<td>-25</td>
<td>327965</td>
<td>90</td>
<td>3797</td>
</tr>
<tr>
<td>-20</td>
<td>236377</td>
<td>100</td>
<td>3207</td>
</tr>
<tr>
<td>-15</td>
<td>176700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>139814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>88618</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>79983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>57368</td>
<td>150</td>
<td>1448</td>
</tr>
<tr>
<td>10</td>
<td>44764</td>
<td>105</td>
<td>1289</td>
</tr>
<tr>
<td>15</td>
<td>38327</td>
<td>110</td>
<td>1123</td>
</tr>
<tr>
<td>20</td>
<td>27854</td>
<td>115</td>
<td>982</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
<td>120</td>
<td>881</td>
</tr>
<tr>
<td>30</td>
<td>17830</td>
<td>125</td>
<td>756</td>
</tr>
</tbody>
</table>
Switching Definitions BUCK IGBT

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>150 °C</td>
</tr>
<tr>
<td>$R_{(on)}$</td>
<td>4 Ω</td>
</tr>
<tr>
<td>$R_{(off)}$</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1 | Turn-off Switching Waveforms & definition of t_{do}, t_{Eoff}

$f_{do} = \text{integrating time for } E_{do}$

![Figure 1](image1)

$V_{GE}(0\%) = -15 \text{ V}$

$V_{GE}(100\%) = 15 \text{ V}$

$V_C(100\%) = 350 \text{ V}$

$I_C(100\%) = 150 \text{ A}$

$t_{do} = 0.25 \mu s$

$t_{Eoff} = 0.63 \mu s$

Figure 2 | Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$f_{don} = \text{integrating time for } E_{don}$

![Figure 2](image2)

$V_{GE}(0\%) = -15 \text{ V}$

$V_{GE}(100\%) = 15 \text{ V}$

$V_C(100\%) = 350 \text{ V}$

$I_C(100\%) = 150 \text{ A}$

$t_{don} = 0.16 \mu s$

$t_{Eon} = 0.36 \mu s$

Figure 3 | Turn-off Switching Waveforms & definition of t_{r}

![Figure 3](image3)

$V_C(100\%) = 350 \text{ V}$

$I_C(100\%) = 150 \text{ A}$

$t_{r} = 0.11 \mu s$

Figure 4 | Turn-on Switching Waveforms & definition of t_{f}

![Figure 4](image4)

$V_C(100\%) = 350 \text{ V}$

$I_C(100\%) = 150 \text{ A}$

$t_{f} = 0.03 \mu s$
Switching Definitions BUCK IGBT

Figure 5
Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{off}

![Graph showing turn-off switching waveforms]

- $P_{\text{off}}(100\%) = 52.44$ kW
- $E_{\text{off}}(100\%) = 5.92$ mJ
- $t_{\text{off}} = 0.63$ µs

Figure 6
Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{on}

![Graph showing turn-on switching waveforms]

- $P_{\text{on}}(100\%) = 52.44$ kW
- $E_{\text{on}}(100\%) = 1.75$ mJ
- $t_{\text{on}} = 0.36$ µs

Figure 7
Output inverter FRED

Gate voltage vs Gate charge (measured)

![Graph showing gate voltage vs gate charge]

- $V_{\text{GEoff}} = -15$ V
- $V_{\text{GEon}} = 15$ V
- $V_{\text{C}}(100\%) = 350$ V
- $I_{\text{d}}(100\%) = 150$ A
- $Q_{\text{g}} = 1585.43$ nC

Figure 8
Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{r}

![Graph showing turn-off switching waveforms]

- $V_{\text{d}}(100\%) = 350$ V
- $I_{\text{d}}(100\%) = 150$ A
- $I_{\text{RRM}}(100\%) = -178$ A
- $t_{\text{r}} = 0.15$ µs
Switching Definitions BUCK IGBT

Figure 9
Output inverter FRED

Turn-on Switching Waveforms & definition of \(t_{Qrr} \)

\(t_{Qrr} = \text{integrating time for } Q_{rr} \)

\[
\begin{align*}
I_d(100\%) &= 150 \text{ A} \\
Q_{rr}(100\%) &= 13.73 \mu\text{C} \\
t_{Qrr} &= 0.30 \mu\text{s}
\end{align*}
\]

Figure 10
Output inverter FRED

Turn-on Switching Waveforms & definition of \(t_{Erec} \)

\(t_{Erec} = \text{integrating time for } E_{rec} \)

\[
\begin{align*}
P_{rec}(100\%) &= 52.44 \text{ kW} \\
E_{rec}(100\%) &= 3.63 \text{ mJ} \\
t_{Erec} &= 0.30 \mu\text{s}
\end{align*}
\]

Measurement circuit

Figure 11
BUCK stage switching measurement circuit
Switching Definitions BOOST IGBT

General conditions

\[T_j = 150 \, ^\circ \text{C} \]
\[R_{\text{on}} = 4 \, \Omega \]
\[R_{\text{off}} = 4 \, \Omega \]

Figure 1: 10-F106NIA150SA-M136F Output inverter IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}}, t_{\text{Eoff}} \)
(\(t_{\text{Eoff}} \) = integrating time for \(E_{\text{off}} \))

![Turn-off Switching Waveforms](chart)

- \(V_{\text{GE}}(0\%) = -15 \, \text{V} \)
- \(V_{\text{GE}}(100\%) = 15 \, \text{V} \)
- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 150 \, \text{A} \)
- \(t_{\text{doff}} = 0.25 \, \mu\text{s} \)
- \(t_{\text{Eoff}} = 0.49 \, \mu\text{s} \)

Figure 2: Output inverter IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}}, t_{\text{Eon}} \)
(\(t_{\text{Eon}} \) = integrating time for \(E_{\text{on}} \))

![Turn-on Switching Waveforms](chart)

- \(V_{\text{GE}}(0\%) = -15 \, \text{V} \)
- \(V_{\text{GE}}(100\%) = 15 \, \text{V} \)
- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 150 \, \text{A} \)
- \(t_{\text{don}} = 0.16 \, \mu\text{s} \)
- \(t_{\text{Eon}} = 0.34 \, \mu\text{s} \)

Figure 3: Output inverter IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{f}} \)

![Turn-off Switching Waveforms](chart)

- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 150 \, \text{A} \)
- \(t_{\text{f}} = 0.10 \, \mu\text{s} \)

Figure 4: Output inverter IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{r}} \)

![Turn-on Switching Waveforms](chart)

- \(V_{\text{CE}}(100\%) = 350 \, \text{V} \)
- \(I_{\text{C}}(100\%) = 150 \, \text{A} \)
- \(t_{\text{r}} = 0.03 \, \mu\text{s} \)

Copyright by Vincotech
Switching Definitions BOOST IGBT

Figure 5 Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}} (100\%) = 52.38$ kW
- $E_{\text{off}} (100\%) = 5.94$ mJ
- $t_{\text{Eoff}} = 0.49$ μs

Figure 6 Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}} (100\%) = 52.38$ kW
- $E_{\text{on}} (100\%) = 1.68$ mJ
- $t_{\text{Eon}} = 0.34$ μs

Figure 7 Output inverter FRED

Gate voltage vs Gate charge (measured)

- $V_{\text{GEoff}} = -15$ V
- $V_{\text{GEon}} = 15$ V
- $V_{\text{C}} (100\%) = 350$ V
- $I_\text{C} (100\%) = 150$ A
- $Q_g = 1583.47$ nC

Figure 8 Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{trr}

- $V_{\text{d}} (100\%) = 350$ V
- $I_{\text{trr}} (100\%) = 150$ A
- $I_{\text{RR M}} (100\%) = -166$ A
- $t_{\text{trr}} = 0.15$ μs

Copyright by Vincotech
Switching Definitions BOOST IGBT

Figure 9
Output inverter FRED

Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} =$ integrating time for Q_{rr})

<table>
<thead>
<tr>
<th>$I_d(100%)$</th>
<th>150 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{rr}(100%)$</td>
<td>14.35 μC</td>
</tr>
<tr>
<td>t_{Qrr}</td>
<td>0.31 μs</td>
</tr>
</tbody>
</table>

Figure 10
Output inverter FRED

Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

<table>
<thead>
<tr>
<th>$P_{rec}(100%)$</th>
<th>52.38 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{rec}(100%)$</td>
<td>4.14 mJ</td>
</tr>
<tr>
<td>t_{Erec}</td>
<td>0.31 μs</td>
</tr>
</tbody>
</table>

Measurement circuit

Figure 11

BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-F106NIA150SA-M136F</td>
<td>M136F</td>
<td>M136F</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin Table</th>
<th>Pin Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>X Y</td>
</tr>
<tr>
<td>1 32.2 0.9</td>
<td>26 0 22.8</td>
</tr>
<tr>
<td>2 32.2 0</td>
<td>21 27 25.3</td>
</tr>
<tr>
<td>3 32.2 2.75</td>
<td>22 0 25.5</td>
</tr>
<tr>
<td>4 32.2 7.9</td>
<td>23 27 26.2</td>
</tr>
<tr>
<td>5 32.2 3.9</td>
<td>24 0 26.2</td>
</tr>
<tr>
<td>6 9.2 5.75</td>
<td>25 18.3 22.6</td>
</tr>
<tr>
<td>7 6.2 6.9</td>
<td>26 21.3 21.3</td>
</tr>
<tr>
<td>8 6.2 3.9</td>
<td>27 21.3 24.3</td>
</tr>
<tr>
<td>9 2.7 0</td>
<td>28 43 23.7</td>
</tr>
<tr>
<td>10 0 0</td>
<td>29 46 21</td>
</tr>
<tr>
<td>11 0 2.7</td>
<td>30 46 26</td>
</tr>
<tr>
<td>12 0 2.7</td>
<td>31 52.2 26.3</td>
</tr>
<tr>
<td>13 2.7 5.4</td>
<td>32 49.5 22.8</td>
</tr>
<tr>
<td>14 0 5.4</td>
<td>33 52.2 22.8</td>
</tr>
<tr>
<td>15 0 2.7</td>
<td>34 49.5 25.5</td>
</tr>
<tr>
<td>16 0 12.75</td>
<td>35 52.2 25.5</td>
</tr>
<tr>
<td>17 2.7 14.0</td>
<td>36 45.5 26.2</td>
</tr>
<tr>
<td>18 0 4.65</td>
<td>37 52.2 26.2</td>
</tr>
<tr>
<td>19 2.7 20.8</td>
<td></td>
</tr>
</tbody>
</table>

Pinout

[Diagram of the device's pinout, showing the connections and layout of the pins.]
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.