

preliminary datasheet

flowPIM0+PFC 2nd

Output Inverter Application

600V/20A

3phase SPWM

V_{GEon} = V_{GEoff} -15 V

 R_{gon} 16 Ω

 R_{goff} 16 Ω

Figure 1

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 $T_j =$

126 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

IGBT Figure 3

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$ 126 \mathcal{C} DC link = 400 ٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

Figure 4

126 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

Typical average switching loss

as a function of output current

 $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$

1

126 ${\mathfrak C}$

DC link = 400 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

Output Inverter Application

Figure 6

600V/20A

fsw (kHz)

Αt

 ${\mathfrak C}$ $T_j =$ 126 DC link = V 400 kHz $f_{sw} =$

 T_h from 60 $^{\circ}$ to 100 $^{\circ}$ in steps of 5 $^{\circ}$

Αt

 $T_j =$ 126 C DC link = 400 ٧ 80

 \mathcal{C}

At

 $T_j =$ 126 ${\mathfrak C}$ DC link = 400

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 126 \mathcal{C} DC link = 400

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

Output Inverter Application

600V/20A

At

 $T_j =$ 126 $^{\circ}$ C DC link = 400 $^{\circ}$ V

Mi = 1 cos φ = 0,80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

igure 11 Inverte

Typical available overload factor as a function of motor power and switching frequency $P_{peak}/P_{nom}=f(P_{nom},f_{sw})$

Αt

 $T_j = 126$ C DC link = 400 V

 $\begin{array}{ll} \text{Mi} = & 1 \\ \cos \phi = & 0.8 \end{array}$

f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Figure 10 Inverted

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At		
$T_j =$	126	${\mathfrak C}$
DC link =	400	V
Mi =	1	
cos σ=	0.80	

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Boost PFC Application General conditions

600V/20A

Boost PFC

 $V_{GEon} = 10 V$

 $V_{GEoff} = 0 V$

 $R_{gon} = 8 \Omega$

 $R_{goff} = 8 \Omega$

V_{in} = V_{inpk}*sinωt

MOSFET

Typical average static loss as a function of input current

Αt

 $T_j =$ 125 ${\mathfrak C}$ Vinpk / Vout from 0,1 to 1 in steps of 0,1

Αt $T_j =$

125 C DC link = 400 ٧

fsw from 20 kHz to 160 kHz in steps of factor 2

Revision: 1

Typical average static loss as a function of input current

 $P_{loss} = f(I_{in})$

Αt

 $T_j =$ 125 $^{\circ}$

Vinpk / Vout from 0,1 to 1 in steps of 0,1

Typical average switching loss

Αt

DC link =

 $T_j =$ 125 $^{\circ}$ 400

fsw from 20 kHz to 160 kHz in steps of factor 2

Boost PFC Application

600V/20A

 $\label{eq:AtT} \begin{array}{lll} \textbf{At} & & & \\ \textbf{T}_{j} = & 125 & & \mathbb{C} \\ \textbf{DC link} = & 400 & & \textbf{V} \\ \textbf{fsw} = & 20 & & \textbf{kHz} \end{array}$

Th from 60 $^{\circ}$ C to 100 $^{\circ}$ C in steps of 5 $^{\circ}$ C

Typical available input current as a function of of V_{inpk} / V_{out} and switching frequency $I_{in} = f(f_{sw}, V_{inpk}/V_{out})$ Iin (A) /inpk/Vout 24,0-26,0 22,0-24,0 20,0-22,0 ■18,0-20,0 □ 16,0-18,0 **□** 14.0-16.0 12,0-14,0 ■ 10,0-12,0 8,0-10,0 6,0-8,0 4,0-6,0 2,0-4,0 fsw (kHz)

 At
 T_j =
 125
 \mathbb{C}

 DC link =
 400
 V

 T_h =
 80
 \mathbb{C}

 $T_{j} = 125 \qquad \Upsilon$ $DC link = 400 \qquad V$ $V_{inpk}/V_{out} = 0,8$

Th from 60 ℃ to 100 ℃ in steps of 5 ℃

 $\label{eq:total_control_fit} \begin{array}{lll} \textbf{At} & & & \\ \textbf{T}_j = & 125 & & \\ \textbf{DC link} = & 400 & & \\ \textbf{V}_{inpk}/V_{out} = & 0,4 & & \\ \end{array}$

Th from 60 ℃ to 100 ℃ in steps of 5 ℃

Boost PFC Application

600V/20A

Αt

 $\begin{aligned} T_j &= & 125 & & \\ \text{DC link} &= & 400 & & \\ V_{\text{inpk}} / V_{\text{out}} &= & 0,8 & & \text{kHz} \end{aligned}$

fsw from 20 kHz to 160 kHz in steps of factor 2

Figure 11 Typical available electric input power as a function of

Αt

 $T_j = 125$ C DC link = 400 V

 $V_{inpk}/V_{out} = 0,4$

fsw from 20 kHz to 160 kHz in steps of factor 2 $\,$

Figure 10 PFC

Typical efficiency as a function of input power efficiency = $f(P_{in})$

At

 $\begin{array}{lll} T_j = & 125 & & \\ \text{DC link} = & 400 & & \\ V_{\text{inpk}}/V_{\text{out}} = & 0,8 & & \text{kHz} \end{array}$

fsw from 20 kHz to 160 kHz in steps of factor 2

Figure 12

Typical efficiency as a function of input power efficiency = $f(P_{in})$

Αt

 $T_j = 125$ C DC link = 400 V

 $V_{inpk}/V_{out} = 0,4$

fsw from 20 kHz to 160 kHz in steps of factor 2

Boost PFC Application

600V/20A

Figure 15

Typical efficiency as a function of input power efficiency = $f(P_{in})$

 $\begin{tabular}{lll} \textbf{At} & & & & & & \\ T_j = & & 125 & & & & \\ DC \ link = & 400 & & V \\ V_{inpk}/V_{out} = & 0.8 & & kHz \\ \end{tabular}$

fsw from 20 kHz to 160 kHz in steps of factor 2

Typical efficiency as a function of input power efficiency = $f(P_{in})$

At $T_j = 125$ °C

Figure 16 Typical efficiency as a function of input power

efficiency = f(P_{in})

 $\label{eq:first-decomposition} \begin{array}{lll} \textbf{At} & & & & \\ \textbf{T}_j = & & & \\ \textbf{DC link} = & 400 & & V \\ \textbf{V}_{inpk}/V_{out} = & 0,4 & & kHz \end{array}$

fsw from 20 kHz to 160 kHz in steps of factor 2 $\,$