

preliminary datasheet

flowPIM0+PFC 2nd

Output Inverter Application

600V/15A

3phase SPWM

V_{GEon} = V_{GEoff} -15 V

 $\mathbf{R}_{\mathsf{gon}}$ 16 Ω

 R_{goff} 16 Ω

Figure 1

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$ Ploss

 \mathbf{At} $T_j =$

125 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

IGBT Figure 3

Typical average switching loss

Αt

 $T_j =$ 125 \mathcal{C}

DC link = 400 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

125 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

Figure 4 Typical average switching loss

as a function of output current

 $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$

125 ${\mathfrak C}$ ٧

DC link = 400

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

Output Inverter Application

600V/15A

fsw (kHz)

Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 400 kHz $f_{sw} =$

 T_h from 60 $^{\circ}$ to 100 $^{\circ}$ in steps of 5 $^{\circ}$

Αt

 $T_j =$ 125 C DC link = 400 ٧ 80

 \mathcal{C}

At

 $T_j =$ 125 ${\mathfrak C}$ DC link = 400

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 125 \mathcal{C} DC link = 400

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

Output Inverter Application

600V/15A

Typical available peak output power as a function of heatsink temperature $P_{out} = f(T_i)$

Αt

 $T_j =$ 125 \mathbb{C} DC link = 400 \mathbb{V}

DC link = 400 Mi = 1

 $\begin{array}{ll} cos \ \phi \text{=} & 0,80 \\ f_\text{sw} \ from & 2 \ kHz \ to \ 16 \ kHz \ in \ steps \ of \ factor \ 2 \end{array}$

Figure 11 Inverte

Αt

 $T_j = 125$ C DC link = 400 V

 $\begin{array}{ll} \text{Mi} = & 1 \\ \cos \phi = & 0.8 \end{array}$

 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Figure 10 Inverter

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At $T_j =$

125 ℃

DC link = 400 V Mi = 1

cos φ= 0,80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Boost PFC Application General conditions

600V/15A

Boost PFC

 $V_{GEon} = 10 V$

 $V_{GEoff} = 0 V$

 $R_{gon} = 8 \Omega$

 $R_{goff} = 8 \Omega$

V_{in} = V_{inpk}*sinωt

MOSFET

Typical average static loss as a function of input current $P_{loss} = f(I_{in})$

Αt

 $T_j =$ 125 ${\mathfrak C}$ Vinpk / Vout from 0,1 to 1 in steps of 0,1

MOSFET

Αt $T_j =$

125 C DC link = 400

fsw from 20 kHz to 160 kHz in steps of factor 2

Typical average static loss as a function of input current $P_{loss} = f(I_{in})$

Αt

 $T_j =$ 125 $^{\circ}$

Vinpk / Vout from 0,1 to 1 in steps of 0,1

Αt

 $T_j =$ 125 $^{\circ}$ DC link = 400

fsw from 20 kHz to 160 kHz in steps of factor 2

Boost PFC Application

600V/15A

 $\begin{tabular}{lll} \textbf{At} & & & & & \\ T_j = & 125 & & & \\ \textbf{DC link} = & 400 & & V \\ fsw = & 20 & & kHz \\ \end{tabular}$

Th from 60 ℃ to 100 ℃ in steps of 5 ℃

 $\begin{array}{lllll} \textbf{At} & & & & \\ \textbf{T}_j = & 125 & & \text{°C} \\ \textbf{DC link} = & 400 & & \text{V} \\ \textbf{T}_h = & 80 & & \text{°C} \\ \end{array}$

 $\label{eq:AtT} \begin{array}{lll} \textbf{At} & & & \\ T_j = & 125 & & \\ \textbf{DC link} = & 400 & & V \\ V_{inpk}/V_{out} = & 0,8 & & \end{array}$

Th from 60 ℃ to 100 ℃ in steps of 5 ℃

Th from 60 ℃ to 100 ℃ in steps of 5 ℃

Boost PFC Application

600V/15A

Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 400 $V_{inpk}/V_{out} = 0.8$

fsw from 20 kHz to 160 kHz in steps of factor 2

kHz

Typical available electric input power as a function of

Αt

 $T_j =$ 125 C DC link = 400

 $V_{inpk}/V_{out} = 0,4$

fsw from 20 kHz to 160 kHz in steps of factor 2

Figure 10

Typical efficiency as a function of input power efficiency = $f(P_{in})$

Αt

 $T_j =$ 125 ${\mathfrak C}$ DC link = V 400 $V_{inpk}/V_{out} = 0.8$ kHz

fsw from 20 kHz to 160 kHz in steps of factor 2

Typical efficiency as a function of input power efficiency = $f(P_{in})$

Αt

 $T_j =$ 125 \mathcal{C} DC link = 400

 $V_{inpk}/V_{out} = 0,4$

fsw from 20 kHz to 160 kHz in steps of factor 2

Boost PFC Application

600V/15A

Figure 15

Typical efficiency as a function of input power efficiency = $f(P_{in})$

125

Αt $T_j =$ 125 ${\mathfrak C}$ DC link = 400 ٧ $V_{inpk}/V_{out} = 0.8$ kHz

fsw from 20 kHz to 160 kHz in steps of factor 2

Typical efficiency as a function of input power efficiency = $f(P_{in})$

Typical efficiency as a function of input power efficiency = $f(P_{in})$

125

Αt $T_j =$ ${\mathbb C}$ DC link = 400 ٧ $V_{inpk}/V_{out} = 0,4$ kHz

fsw from 20 kHz to 160 kHz in steps of factor 2