Boost PFC Application

General conditions

<table>
<thead>
<tr>
<th>Boost PFC</th>
<th>600 V / 99 mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>10 V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>0 V</td>
</tr>
<tr>
<td>R_{on}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>V_{in}</td>
<td>V_{in}*sinωt</td>
</tr>
</tbody>
</table>

figure 1

Typical average static loss as a function of input current

$P_{loss} = f(I_{in})$

- $T_j = 125 \ ^\circ C$
- V_{inpk} / V_{out} from 0,1 to 1 in steps of 0,1

figure 2

Typical average static loss as a function of input current

$P_{loss} = f(I_{in})$

- $T_j = 125 \ ^\circ C$
- V_{inpk} / V_{out} from 0,1 to 1 in steps of 0,1

figure 3

Typical average switching loss as a function of input current

$P_{loss} = f(I_{in})$

- $T_j = 125 \ ^\circ C$
- DC link = 400 V
- f_{sw} from 20 kHz to 160 kHz in steps of factor 2

figure 4

Typical average switching loss as a function of input current

$P_{loss} = f(I_{in})$

- $T_j = 125 \ ^\circ C$
- DC link = 400 V
- f_{sw} from 20 kHz to 160 kHz in steps of factor 2
Boost PFC Application

figure 5

Typical available input current as a function of V_{inpk}/V_{out}

$$I_{in} = f(V_{inpk}/V_{out})$$

$T_j = T_{jmax} - 25 \ ^\circ C$

DC link = 400 V

$f_{sw} = 20$ kHz

Ts from 60 °C to 100 °C in steps of 5 °C

figure 6

Typical available input current as a function of switching frequency

$$I_{in} = f(f_{sw})$$

$T_j = T_{jmax} - 25 \ ^\circ C$

DC link = 400 V

$V_{inpk}/V_{out} = 0,8$

Ts from 60 °C to 100 °C in steps of 5 °C

figure 7

Typical available input current as a function of V_{inpk}/V_{out} and switching frequency

$$I_{in} = f(V_{inpk}/V_{out}, f_{sw})$$

$T_j = T_{jmax} - 25 \ ^\circ C$

DC link = 400 V

$V_{inpk}/V_{out} = 0,4$

Ts from 60 °C to 100 °C in steps of 5 °C

figure 8

Typical available input current as a function of switching frequency

$$I_{in} = f(f_{sw})$$

$T_j = T_{jmax} - 25 \ ^\circ C$

DC link = 400 V

$V_{inpk}/V_{out} = 0,4$

Ts from 60 °C to 100 °C in steps of 5 °C
flow PFC 0

Boost PFC Application 600 V / 99 mΩ

figure 9
Typical available electric input power as a function of heatsink temperature

\[P_{in} = f(T_s) \]

\[T_j = T_{jmax} - 25 \, ^\circ C \]
DC link = 400 V
\[V_{out}/V_{in} = 0.8 \]
fsw from 20 kHz to 160 kHz in steps of factor 2

figure 10
Typical efficiency as a function of input power

\[\text{efficiency} = f(P_{in}) \]

\[T_j = T_{jmax} - 25 \, ^\circ C \]
DC link = 400 V
\[V_{out}/V_{in} = 0.8 \]
fsw from 20 kHz to 160 kHz in steps of factor 2

figure 11
Typical available electric input power as a function of heatsink temperature

\[P_{in} = f(T_s) \]

\[T_j = T_{jmax} - 25 \, ^\circ C \]
DC link = 400 V
\[V_{out}/V_{in} = 0.4 \]
fsw from 20 kHz to 160 kHz in steps of factor 2

figure 12
Typical efficiency as a function of input power

\[\text{efficiency} = f(P_{in}) \]

\[T_j = T_{jmax} - 25 \, ^\circ C \]
DC link = 400 V
\[V_{out}/V_{in} = 0.4 \]
fsw from 20 kHz to 160 kHz in steps of factor 2
Boost PFC Application

Typical average static loss as a function of input current

\[P_{\text{loss}} = f(I_{\text{in}}) \]

![Graph](image)

\(T_j = 125 \ ^\circ C \)

Typical efficiency as a function of input power

\[\text{efficiency} = f(P_{\text{in}}) \]

![Graph](image)

\(T_j = 125 \ ^\circ C \)

DC link = 400 \ V

\(V_{\text{inpk}} / V_{\text{out}} = 0,8 \)

fsw from 20 kHz to 160 kHz in steps of factor 2

Typical efficiency as a function of input power

\[\text{efficiency} = f(P_{\text{in}}) \]

![Graph](image)

\(T_j = T_{\text{jmax}} - 25 \ ^\circ C \)

DC link = 400 \ V

\(V_{\text{inpk}} / V_{\text{out}} = 0,4 \)

fsw from 20 kHz to 160 kHz in steps of factor 2

Copyright Vincotech