flowPIM E1

Features
- IGBT M7 with low V_{CES} and improved EMC behavior
- Standard industrial housing
- Optimized $R_{th(j-s)}$ with Phase Change Material
- Built-in NTC

flow E1 12 mm housing

Press-fit pin
Solder pin

Target applications
- Industrial Drives

Types
- 10-EZ12PMA010M7-L927A78T
- 10-E112PMA010M7-L927A78Z

Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$T_j = T_{jmax}$, $T_i = 80 , ^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEmax}</td>
<td>I_C, limited by T_{jmax}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$, $T_i = 80 , ^\circ C$</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td>$T_j = T_{jmax}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_j = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{F})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td>(T_j), limited by (T_{j\text{max}})</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>43</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Brake Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CES})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_{C})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CRM})</td>
<td>(I_p), limited by (T_{j\text{max}})</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GES})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Brake Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{F})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td>(T_j), limited by (T_{j\text{max}})</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>43</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{F})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>47</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>(I_{SM})</td>
<td>50 Hz Single Half Sine Wave (t_p = 10 , \text{ms}) (T_j = 150 , ^\circ C)</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>(P_{t})</td>
<td></td>
<td>370</td>
<td>A^2\text{s}</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{j\text{max}}) (T_s = 80 , ^\circ C)</td>
<td>58</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \ ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-40...+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operation temperature under</td>
<td>T_{op}</td>
<td>-40...(T_{max} - 25)</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>switching condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $t_p = 2 \text{ s}$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $t_p = 1 \text{ min}$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>≥ 600</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>GE</sub></td>
<td>[V]</td>
<td>10</td>
<td>0.001</td>
<td>25</td>
</tr>
<tr>
<td>V<sub>GS</sub></td>
<td>[V]</td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>V<sub>CE</sub></td>
<td>[V]</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>V<sub>DS</sub></td>
<td>[V]</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r<sub>g</sub></td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub>ies</sub></td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C<sub>oes</sub></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub>res</sub></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q<sub>g</sub></td>
<td>15</td>
<td>600</td>
<td>10</td>
</tr>
</tbody>
</table>

Inverter Switch

Static

Gate-emitter threshold voltage

| V_{GE(th)} | [V] | 10 | 0.001 | 25 | 5.4 | 6.0 | 6.6 | V |

Collector-emitter saturation voltage

| V_{CEsat} | [V] | 15 | 10 | 25 | 125 | 150 | 1.66 | 1.90 | 1.96 | V |

Collector-emitter cut-off current

| I_{oss} | [µA] | 0 | 1200 | 25 | 35 | µA |

Gate-emitter leakage current

| I_{ges} | [nA] | 20 | 0 | 25 | 500 | nA |

Internal gate resistance

| r_g | none | | | | | | | | Ω |

Input capacitance

| C_{ies} | 0 | 10 | 25 | 2000 | pF |

Output capacitance

| C_{oes} | 0 | | | 86 | pF |

Reverse transfer capacitance

| C_{res} | 0 | | | 23 | |

Gate charge

| Q_g | 15 | 600 | 10 | 25 | 80 | nC |

Thermal

Thermal resistance junction to sink

| R_{th(js)} | λ_{paste} = 3.4 W/mK (PSX) | 1.69 | K/W |

Dynamic

Turn-on delay time

| t_{on} | [ns] | 25 | 125 | 150 | 128 | 126 | 123 | ns |

Rise time

| t_r | R_{on} = 32 Ω | R_{off} = 32 Ω | 25 | 125 | 150 | 29 | 32 | 34 |

Turn-off delay time

| t_{off} | [ns] | 25 | 125 | 150 | 145 | 179 | 182 | ns |

Fall time

| t_f | [ns] | 25 | 125 | 150 | 98 | 108 | 117 | ns |

Turn-on energy (per pulse)

| E_{on} | Q_{FWD} = 1.1 µC | Q_{FWD} = 1.7 µC | Q_{FWD} = 1.8 µC | 25 | 125 | 150 | 0.883 | 1.13 | 1.19 | mWs |

Turn-off energy (per pulse)

| E_{off} | [mWs] | 25 | 125 | 150 | 0.656 | 0.860 | 0.908 | mWs |

* L_s = 14 nH
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(V_{fs})</td>
<td>10</td>
<td>1,61</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25, 125, 150</td>
<td>1,69, 1,69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

Inverter Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(I_{F})</th>
<th>1200</th>
<th>25</th>
<th>25</th>
<th>(\mu A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(V_F)</td>
<td>10</td>
<td>25</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_R)</td>
<td>25</td>
<td>25</td>
<td>125</td>
<td>409</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(R_{th(j-s)})</th>
<th>2,19</th>
<th>K/W</th>
</tr>
</thead>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(I_{peak})</th>
<th>25</th>
<th>9</th>
<th>9</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak recovery current</td>
<td>(I_{RRM})</td>
<td>25</td>
<td>125</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>25</td>
<td>373</td>
<td>409</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>(Q_{rec})</td>
<td>25</td>
<td>150</td>
<td>125</td>
<td>(\mu C)</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td>25</td>
<td>0,374</td>
<td>0,620</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>((di/dt)_{max})</td>
<td>25</td>
<td>85</td>
<td>49</td>
<td>(A/\mu s)</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE\text{th}}$</td>
<td>10</td>
<td>0,001</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE\text{sat}}$</td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>$I_{CE\text{S}}$</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{gs}</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{os}</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>0</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$λ_{paste} = 3,4 W/mK$ (PSX)</td>
<td></td>
<td>1,69</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td>0 / 15</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{ps} = 32 \Omega$</td>
<td>0 / 15</td>
<td>600</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>$R_{ps} = 32 \Omega$</td>
<td>0 / 15</td>
<td>600</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{gs} = 32 \Omega$</td>
<td>0 / 15</td>
<td>600</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on\text{H}} = 1 \mu C$</td>
<td>0 / 15</td>
<td>600</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off\text{H}} = 1,6 \mu C$</td>
<td>0 / 15</td>
<td>600</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{ge} [V]</td>
<td>10</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{gs} [V]</td>
<td>125</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{f} [A]</td>
<td>150</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_{j} [°C]</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Brake Diode

Static

- **Forward voltage**
 - V_{f}
 - Conditions:
 - 10
 - 125
 - 150
 - Value:
 - 1.61
 - 1.69
 - 2.1
 - Unit: V

- **Reverse leakage current**
 - I_{r}
 - Conditions:
 - 1200
 - 25
 - Value:
 - 25
 - Unit: μA

Thermal

- **Thermal resistance junction to sink**
 - $R_{th(j-s)}$
 - Value:
 - 2.19
 - Unit: K/W

Dynamic

- **Peak recovery current**
 - I_{prm}
 - Conditions:
 - 25
 - 125
 - 150
 - Value:
 - 7
 - 8
 - 8
 - Unit: A

- **Reverse recovery time**
 - t_{rr}
 - Conditions:
 - 25
 - 125
 - 150
 - Value:
 - 2647
 - 3964
 - 4475
 - Unit: ns

- **Recovered charge**
 - Q_{r}
 - Conditions:
 - $di/dt = 165$ A/μs
 - $di/dt = 148$ A/μs
 - $di/dt = 153$ A/μs
 - Value:
 - 0.989
 - 1.57
 - 1.77
 - Unit: μC

- **Reverse recovered energy**
 - E_{rec}
 - Conditions:
 - 25
 - 125
 - 150
 - Value:
 - 0.337
 - 0.577
 - 0.666
 - Unit: mWs

- **Peak rate of fall of recovery current**
 - $(di/dt)_{max}$
 - Conditions:
 - 25
 - 125
 - 150
 - Value:
 - 6
 - 4
 - 4
 - Unit: A/μs

Rectifier Diode

Static

- **Forward voltage**
 - V_{f}
 - Conditions:
 - 35
 - 25
 - 125
 - Value:
 - 1.17
 - 1.13
 - Unit: V

- **Reverse leakage current**
 - I_{r}
 - Conditions:
 - 1600
 - 25
 - Value:
 - 50
 - Unit: μA

Thermal

- **Thermal resistance junction to sink**
 - $R_{th(j-s)}$
 - Value:
 - 1.20
 - Unit: K/W
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>GE</sub></td>
<td></td>
<td>[V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GS</sub></td>
<td></td>
<td>[V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>C</sub></td>
<td></td>
<td>[A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>D</sub></td>
<td></td>
<td>[A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>F</sub></td>
<td></td>
<td>[A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>j</sub> [°C]</td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Deviation of R<sub>250</sub></td>
<td>ΔR<sub>Th</sub></td>
<td>R<sub>250</sub> = 493 Ω</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>245</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>1,4</td>
</tr>
<tr>
<td>B-value</td>
<td>R<sub>250</sub></td>
<td>Tol. ±2 %</td>
<td>25</td>
<td>3375</td>
</tr>
<tr>
<td>B-value</td>
<td>R<sub>25100</sub></td>
<td>Tol. ±2 %</td>
<td>25</td>
<td>3437</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech
Inverter Switch Characteristics

Figure 1. Typical output characteristics

\(I_C = f(V_{CE}) \)

- \(t_p = 250 \mu s \)
- \(V_{CE} = 15 \text{ V} \)
- \(T_j: 25 ^\circ C \) (solid line)
- \(125 ^\circ C \) (dotted line)
- \(150 ^\circ C \) (dashed line)

Figure 2. Typical output characteristics

\(I_C = f(V_{CE}) \)

- \(t_p = 250 \mu s \)
- \(V_{CE} = 10 \text{ V} \)
- \(T_j: 25 ^\circ C \) (solid line)
- \(125 ^\circ C \) (dotted line)
- \(150 ^\circ C \) (dashed line)

Figure 3. Typical transfer characteristics

\(I_C = f(V_{GE}) \)

- \(t_p = 100 \mu s \)
- \(V_{GE} = 10 \text{ V} \)
- \(T_j: 25 ^\circ C \) (solid line)
- \(125 ^\circ C \) (dotted line)
- \(150 ^\circ C \) (dashed line)

Figure 4. Transient thermal impedance as function of pulse duration

\(Z_{th(j-s)} = f(t_p) \)

- \(D = t_p / T \)
- \(R_{th(j-s)} = 1,69 \text{ K/W} \)

IGBT thermal model values

- \(R (\text{K/W}) \)
- \(\tau (\text{s}) \)
- \(8,19E-02 \)
- \(2,69E+00 \)
- \(1,67E-01 \)
- \(3,26E-01 \)
- \(5,87E-01 \)
- \(5,94E-02 \)
- \(4,55E-01 \)
- \(1,53E-02 \)
- \(2,18E-01 \)
- \(3,12E-03 \)
- \(1,79E-01 \)
- \(4,83E-04 \)
Inverter Switch Characteristics

Figure 5. IGBT
Gate voltage vs gate charge
Safe operating area
$V_G = f(Q_G)$
$I_C = f(V_{CE})$

- $I_C = 10$ A
- $D =$ single pulse
- $T_s = 80$ °C
- $V_{IN} = \pm 15$ V
- $T_j =$ $T_{j,max}$

$V_{CE} = 0$ V
$V_{CE} \leq 0$ V
$T_j \leq 0$ °C

Short circuit duration as a function of V_G
Typical short circuit current as a function of V_G
$t_{p,SC} = f(V_G)$
$I_{SC} = f(V_G)$
Inverter Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(T_j: \)
 - 25 °C
 - 125 °C
 - 150 °C

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,09E-02</td>
<td>3,20E+00</td>
</tr>
<tr>
<td>2,08E-01</td>
<td>2,82E-01</td>
</tr>
<tr>
<td>6,85E-01</td>
<td>4,41E-02</td>
</tr>
<tr>
<td>5,92E-01</td>
<td>1,02E-02</td>
</tr>
<tr>
<td>3,27E-01</td>
<td>2,02E-03</td>
</tr>
<tr>
<td>2,95E-01</td>
<td>3,64E-04</td>
</tr>
</tbody>
</table>

\[D = \frac{t_p}{T} \]

Copyright Vincotech

30 May, 2019 / Revision 4
Brake Switch Characteristics

Figure 1.
Typical output characteristics

$I_C = f(V_{CE})$

Figure 2.
Typical output characteristics

$I_C = f(V_{GE})$

Figure 3.
Typical transfer characteristics

$I_C = f(V_{GE})$

Figure 4.
Transient thermal impedance as function of pulse duration

$Z_{th(j-s)} = f(t_p)$

- $t_p = 250 \, \mu s$
- $t_p = 100 \, \mu s$
- $V_{CE} = 10 \, V$
- $V_{CE} = 15 \, V$
- $T_j: 25^\circ C$
- $T_j: 125^\circ C$
- $T_j: 150^\circ C$

IGBT thermal model values

- $R_{th(j-s)} = 1.69 \, K/W$
- $D = t_p / T$
- $R_{th} (\mu s) = 1.69, 2.69E+00, 3.26E+01, 5.94E+02, 1.53E+02, 3.12E+03, 4.83E+04$

Copyright Vincotech 2019
Brake Switch Characteristics

Figure 5. IGBT

Soft operating area

\[I_c = f(V_{GE}) \]

\[I_c = 10 \, \text{A} \]

D = single pulse

\[V_T = 80 \, \text{°C} \]

\[V_{GE} = \pm 15 \, \text{V} \]

\[T_j = T_{j_{max}} \]
Brake Diode Characteristics

Figure 1. Typical forward characteristics
\[I_F = f(V_F) \]

Figure 2. Transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \, \mu s \)
- \(T_j: 25 \, ^\circ C \)
- \(125 \, ^\circ C \)
- \(150 \, ^\circ C \)

- \(D = \frac{t_p}{T} \)
- \(R_{th(j-s)} = 2.19 \, K/W \)

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,09E-02</td>
<td>3,20E+00</td>
</tr>
<tr>
<td>2,08E-01</td>
<td>2,82E-01</td>
</tr>
<tr>
<td>6,85E-01</td>
<td>4,41E-02</td>
</tr>
<tr>
<td>5,92E-01</td>
<td>1,02E-02</td>
</tr>
<tr>
<td>3,27E-01</td>
<td>2,02E-03</td>
</tr>
<tr>
<td>2,95E-01</td>
<td>3,64E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Rectifier Diode Characteristics

figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^\circ C \)
- \(125 \, ^\circ C \)

Thermistor Characteristics

figure 1.
Typical NTC characteristic

\[R = f(T) \]

- NTC-typical temperature characteristic
- \(R \) (Ω)
- \(T \) (°C)

Copyright Vincotech
Inverter Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(V_{CE} = 600 \) V
- \(T_j = 25 \) °C
- \(V_{CE} = \pm 15 \) V
- \(R_{g(on)} = 32 \) Ω
- \(I_C = 10 \) A

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at
- \(V_{CE} = 600 \) V
- \(T_j = 25 \) °C
- \(V_{CE} = \pm 15 \) V
- \(I_C = 10 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(V_{CE} = 600 \) V
- \(T_j = 25 \) °C
- \(V_{CE} = \pm 15 \) V
- \(R_{g(on)} = 32 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at
- \(V_{CE} = 600 \) V
- \(T_j = 25 \) °C
- \(V_{CE} = \pm 15 \) V
- \(I_C = 10 \) A
Inverter Switching Characteristics

Figure 5.
Typical switching times as a function of collector current

\[t_{d(on)} = f(I_C) \]

With an inductive load at:
- \(T_J = 150 \, ^\circ C \)
- \(V_{CE} = 600 \, V \)
- \(V_{DS} = \pm 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)

Figure 6.
Typical switching times as a function of gate resistor

\[t_{d(on)} = f(R_{gon}) \]

With an inductive load at:
- \(T_J = 150 \, ^\circ C \)
- \(V_{CE} = 600 \, V \)
- \(V_{DS} = \pm 15 \, V \)
- \(I_C = 10 \, A \)

Figure 7.
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

- \(V_{CE} = 600 \, V \)
- \(V_{DS} = \pm 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)

Figure 8.
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

- \(V_{CE} = 600 \, V \)
- \(V_{DS} = \pm 15 \, V \)
- \(I_C = 10 \, A \)
Inverter Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{GS} = 600 \) V
- \(V_{DS} = \pm 15 \) V
- \(T_j = 25 \) °C
- \(R_{on} = 32 \) Ω

\[Q_r \] vs \(I_C \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{on}) \]

At
- \(V_{GS} = 600 \) V
- \(V_{DS} = \pm 15 \) V
- \(T_j = 25 \) °C
- \(I_C = 10 \) A

\[Q_r \] vs \(R_{on} \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{GS} = 600 \) V
- \(V_{DS} = \pm 15 \) V
- \(T_j = 25 \) °C
- \(R_{on} = 32 \) Ω

\[I_{RM} \] vs \(I_C \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{on}) \]

At
- \(V_{GS} = 600 \) V
- \(V_{DS} = \pm 15 \) V
- \(T_j = 25 \) °C
- \(I_C = 10 \) A

\[I_{RM} \] vs \(R_{on} \)
Inverter Switching Characteristics

Figure 13.
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_C) \]

At
- \(V_{CE} = 600 \) V
- \(V_{GS} = +15 \) V
- \(T_J = 25 \) °C
- \(R_{gs} = 32 \) Ω

Figure 14.
Typical rate of fall of forward and reverse recovery current as a function of gate resistor
\[\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{gon}) \]

At
- \(V_{CE} = 600 \) V
- \(V_{GS} = +15 \) V
- \(T_J = 25 \) °C
- \(I_C = 10 \) A

Figure 15.
Reverse bias safe operating area
\[I_C = f(V_{CE}) \]

At
- \(T_J = 175 \) °C
- \(R_{gs} = 32 \) Ω
- \(R_{pot} = 32 \) Ω

Copyright Vincotech
Inverter Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_T</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>32 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>32 Ω</td>
</tr>
</tbody>
</table>

figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

$V_{CE}(0\%) = -15 \text{ V}$
$V_{CE}(100\%) = 15 \text{ V}$
$I_{C}(100\%) = 600 \text{ V}$
$I_{C}(0\%) = 10 \text{ A}$
$t_{doff} = 179 \text{ ns}$

figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

$V_{CE}(0\%) = -15 \text{ V}$
$V_{CE}(100\%) = 15 \text{ V}$
$I_{C}(100\%) = 600 \text{ V}$
$I_{C}(0\%) = 10 \text{ A}$
$t_{don} = 126 \text{ ns}$

figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

$V_{CE}(0\%) = 0 \text{ V}$
$V_{CE}(100\%) = 600 \text{ V}$
$I_{C} (10\%) = 10 \text{ A}$
$t_{f} = 108 \text{ ns}$

figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r

$V_{CE}(0\%) = 0 \text{ V}$
$V_{CE}(100\%) = 600 \text{ V}$
$I_{C} (10\%) = 10 \text{ A}$
$t_{r} = 32 \text{ ns}$
Inverter Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of \(t_{rr} \)

- \(V_f (100\%) = 600 \text{ V} \)
- \(I_f (100\%) = 10 \text{ A} \)
- \(I_{RMS} (100\%) = 9 \text{ A} \)
- \(t_{rr} = 373 \text{ ns} \)

Figure 6. Turn-on Switching Waveforms & definition of \(t_{Qr} \) (integrating time for \(Q_r \))

- \(I_o (100\%) = 10 \text{ A} \)
- \(Q_r (100\%) = 1,66 \text{ µC} \)
Brake Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(V_{CC} = 600 \, V \)
- \(0 / 15 \, V \)
- \(R_{on} = 32 \, \Omega \)

\(T_j = 25 \, ^{\circ}C \)
\(125 \, ^{\circ}C \)
\(150 \, ^{\circ}C \)

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at
- \(V_{CC} = 600 \, V \)
- \(0 / 15 \, V \)
- \(I_C = 10 \, A \)

\(T_j = 25 \, ^{\circ}C \)
\(125 \, ^{\circ}C \)
\(150 \, ^{\circ}C \)

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(V_{CC} = 600 \, V \)
- \(0 / 15 \, V \)
- \(R_{on} = 32 \, \Omega \)

\(T_j = 25 \, ^{\circ}C \)
\(125 \, ^{\circ}C \)
\(150 \, ^{\circ}C \)

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at
- \(V_{CC} = 600 \, V \)
- \(0 / 15 \, V \)
- \(I_C = 10 \, A \)

\(T_j = 25 \, ^{\circ}C \)
\(125 \, ^{\circ}C \)
\(150 \, ^{\circ}C \)
Brake Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

Figure 6. IGBT
Typical switching times as a function of gate resistor

Figure 7. FWD
Typical reverse recovery time as a function of collector current

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

With an inductive load at

\[V_{CE} = 600 \text{ V} \]
\[V_{GE} = 0 \text{ / } 15 \text{ V} \]
\[R_{ges} = 32 \Omega \]
\[I_{C} = 10 \text{ A} \]
\[T_{j} = 150 \degree C \]

At

\[V_{CE} = 600 \text{ V} \]
\[V_{GE} = 0 \text{ / } 15 \text{ V} \]
\[R_{ges} = 32 \Omega \]
\[I_{C} = 10 \text{ A} \]
\[T_{j} = 125 \degree C \]
Brake Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{go n}) \]

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{go n}) \]
Brake Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current \(\frac{d_i}{dt}, \frac{d_{ir}}{dt} = f(I_C)\)

At
- \(V_{CE} = 600\) V
- \(V_{GK} = 0 / 15\) V
- \(R_{on} = 32\) Ω
- \(T_J = 25^\circ C\)

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn-on gate resistor \(\frac{d_i}{dt}, \frac{d_{ir}}{dt} = f(R_{gon})\)

At
- \(V_{CE} = 600\) V
- \(V_{GK} = 0 / 15\) V
- \(R_{on} = 32\) Ω
- \(I_C = 10\) A
- \(T_J = 150^\circ C\)

Figure 15. IGBT
Reverse bias safe operating area
\(I_C = f(V_{CE})\)

At
- \(V_{CE} = 175^\circ C\)
- \(R_{on} = 32\) Ω
- \(R_{off} = 32\) Ω

Copyright Vincotech
Brake Switching Definitions

General conditions

\[\begin{align*}
T_j &= 125 °C \\
R_{gon} &= 32 \, \Omega \\
R_{goff} &= 32 \, \Omega
\end{align*}\]

Figure 1. Turn-off Switching Waveforms & definition of \(t_{doff}, t_{Eoff}\) (\(t_{Eoff}\) = integrating time for \(E_{off}\))

\[\begin{align*}
V_{GE}(0\%) &= 0 \, V \\
V_{GE}(100\%) &= 15 \, V \\
V_{CE}(0\%) &= 600 \, V \\
I_{C}(0\%) &= 10 \, A \\
t_{doff} &= 251 \, \text{ns}
\end{align*}\]

Figure 2. Turn-on Switching Waveforms & definition of \(t_{don}, t_{Eon}\) (\(t_{Eon}\) = integrating time for \(E_{on}\))

\[\begin{align*}
V_{GE}(0\%) &= 0 \, V \\
V_{GE}(100\%) &= 15 \, V \\
V_{CE}(0\%) &= 600 \, V \\
I_{C}(0\%) &= 10 \, A \\
t_{don} &= 68 \, \text{ns}
\end{align*}\]

Figure 3. Turn-off Switching Waveforms & definition of \(t_{r}, t_{f}\)

\[\begin{align*}
I_{C}(0\%) &= 600 \, V \\
I_{C}(10\%) &= 10 \, A \\
t_{r} &= 111 \, \text{ns}
\end{align*}\]

Figure 4. Turn-on Switching Waveforms & definition of \(t_{r}, t_{f}\)

\[\begin{align*}
I_{C}(0\%) &= 600 \, V \\
I_{C}(10\%) &= 10 \, A \\
t_{r} &= 50 \, \text{ns}
\end{align*}\]
Brake Switching Characteristics

Figure 5. FWD Turn-off Switching Waveforms & definition of \(t_{rr} \)

\begin{align*}
V_F (100\%) &= 600 \text{ V} \\
I_F (100\%) &= 10 \text{ A} \\
I_{RRM (100\%)} &= 8 \text{ A} \\
I_o &= 3964 \text{ ns}
\end{align*}

Figure 6. FWD Turn-on Switching Waveforms & definition of \(t_{Qr} \) (integrating time for \(Q_r \))

\begin{align*}
I_F (100\%) &= 10 \text{ A} \\
Q_r (100\%) &= 1,57 \mu\text{C}
\end{align*}
10-EZ12PMA010M7-L927A78T
10-E112PMA010M7-L927A78Z
datasheet

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12 mm housing with Press-fit pins</td>
<td>10-EZ12PMA010M7-L927A78T</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with Press-fit pins</td>
<td>10-E112PMA010M7-L927A78Z</td>
</tr>
<tr>
<td>without thermal paste 12 mm housing with solder pins</td>
<td>10-E112PMA010M7-L927A78Z-/3/</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with solder pins</td>
<td>10-E112PMA010M7-L927A78Z-/3/</td>
</tr>
</tbody>
</table>

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>0</td>
<td>Br</td>
</tr>
<tr>
<td>2</td>
<td>25,6</td>
<td>0</td>
<td>DC-Br</td>
</tr>
<tr>
<td>3</td>
<td>22,4</td>
<td>0</td>
<td>G27</td>
</tr>
<tr>
<td>4</td>
<td>19,2</td>
<td>0</td>
<td>DC-Rect</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>0</td>
<td>G15</td>
</tr>
<tr>
<td>6</td>
<td>12,8</td>
<td>0</td>
<td>DC-3</td>
</tr>
<tr>
<td>7</td>
<td>9,6</td>
<td>0</td>
<td>G13</td>
</tr>
<tr>
<td>8</td>
<td>6,4</td>
<td>0</td>
<td>DC-2</td>
</tr>
<tr>
<td>9</td>
<td>3,2</td>
<td>0</td>
<td>G11</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>DC-1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>25,6</td>
<td>Ph1</td>
</tr>
<tr>
<td>12</td>
<td>3,2</td>
<td>25,6</td>
<td>G12</td>
</tr>
<tr>
<td>13</td>
<td>9,6</td>
<td>25,6</td>
<td>Ph2</td>
</tr>
<tr>
<td>14</td>
<td>12,8</td>
<td>25,6</td>
<td>G14</td>
</tr>
<tr>
<td>15</td>
<td>19,2</td>
<td>25,6</td>
<td>Ph3</td>
</tr>
<tr>
<td>16</td>
<td>22,4</td>
<td>25,6</td>
<td>G16</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>25,6</td>
<td>ACIn1</td>
</tr>
<tr>
<td>18</td>
<td>25,6</td>
<td>19,2</td>
<td>ACIn2</td>
</tr>
<tr>
<td>19</td>
<td>19,2</td>
<td>16</td>
<td>Therm1</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>16</td>
<td>Therm2</td>
</tr>
<tr>
<td>21</td>
<td>25,6</td>
<td>12,8</td>
<td>ACIn3</td>
</tr>
<tr>
<td>22</td>
<td>22,4</td>
<td>6,4</td>
<td>DC+Inv</td>
</tr>
<tr>
<td>23</td>
<td>25,6</td>
<td>6,4</td>
<td>DC+Rect</td>
</tr>
</tbody>
</table>

Outline

- Solder pin
- Press-fit pin

Copyright Vincotech 28 30 May, 2019 / Revision 4
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12, T13, T14, T15, T16</td>
<td>IGBT</td>
<td>1200 V</td>
<td>10 A</td>
<td>Inverter Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12, D13, D14, D15, D16</td>
<td>FWD</td>
<td>1200 V</td>
<td>10 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>T27</td>
<td>IGBT</td>
<td>1200 V</td>
<td>10 A</td>
<td>Brake Switch</td>
<td></td>
</tr>
<tr>
<td>D27</td>
<td>FWD</td>
<td>1200 V</td>
<td>10 A</td>
<td>Brake Diode</td>
<td></td>
</tr>
<tr>
<td>D31, D32, D33, D34, D35, D36</td>
<td>Rectifier</td>
<td>1600 V</td>
<td>35 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ Standard</th>
<th><SPQ Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow E1 packages see vincotech.com website.

Package data

Package data for flow E1 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.