fastPACK E2 SiC

<table>
<thead>
<tr>
<th>Features</th>
<th>1200 V / 16 mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Compact and low inductive design</td>
<td></td>
</tr>
<tr>
<td>• High frequency SiC MOSFET</td>
<td></td>
</tr>
<tr>
<td>• Integrated NTC</td>
<td></td>
</tr>
</tbody>
</table>

Target applications

- Charging Stations
- Power Supply
- Welding & Cutting

Types

- 10-EY124PA016ME-LP49F18T

Schematic

© Vincotech 31 Mar. 2020 / Revision 1
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Bridge Switch - Lo side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-source voltage</td>
<td>V_{DSS}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>$T_j = T_{j\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>71</td>
<td>A</td>
</tr>
<tr>
<td>Peak drain current</td>
<td>$I_{D\text{int}}$</td>
<td>I_t limited by $T_{j\text{max}}$</td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>126</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source voltage</td>
<td>V_{GSS}</td>
<td></td>
<td>-4 / 15</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>H-Bridge Switch - Hi side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-source voltage</td>
<td>V_{DSS}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>$T_j = T_{j\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>71</td>
<td>A</td>
</tr>
<tr>
<td>Peak drain current</td>
<td>$I_{D\text{int}}$</td>
<td>I_t limited by $T_{j\text{max}}$</td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>126</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source voltage</td>
<td>V_{GSS}</td>
<td></td>
<td>-4 / 15</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Module Properties

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...$(T_{j\text{max}} - 25)$</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage*, $t_i = 2 , s$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>AC Voltage, $t_i = 1 , \text{min}$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>9,14</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>≥ 600</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source on-state resistance</td>
<td>$r_{DS(on)}$</td>
<td>15</td>
<td>80</td>
<td>25, 125, 150</td>
</tr>
<tr>
<td>Gate-source threshold voltage</td>
<td>$V_{GS(th)}$</td>
<td>0</td>
<td>0,02</td>
<td>25</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GSS}</td>
<td>15</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>0</td>
<td>85</td>
<td>Ω</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>-4/15</td>
<td>800</td>
<td>80</td>
</tr>
<tr>
<td>Short-circuit input capacitance</td>
<td>C_{iss}</td>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Short-circuit output capacitance</td>
<td>C_{oss}</td>
<td>$f = 100$ kHz</td>
<td>150</td>
<td>258</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>0</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>

Thermal

Thermal resistance junction to sink[*] $R_{th(j-s)}$ ≤ 3,4 W/mK (PSX) 0,75 K/W

[*]Only valid with pre-applied Vincotech thermal interface material.

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>25</td>
<td>125, 150</td>
<td>19,84, 18,88, 18,56</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{on} = 2$ Ω, $R_{off} = 2$ Ω</td>
<td>25</td>
<td>125, 150</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{on} = 2$ Ω, $R_{off} = 2$ Ω</td>
<td>25</td>
<td>125, 150</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>-4/15</td>
<td>600</td>
<td>64</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$\Delta FWD=0,776$ µC</td>
<td>25</td>
<td>125, 150</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$\Delta FWD=1,06$ µC</td>
<td>25</td>
<td>125, 150</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainsource on-state resistance</td>
<td>(r_{DS(on)})</td>
<td>15</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>Gate-source threshold voltage</td>
<td>(V_{GS(th)})</td>
<td>0</td>
<td>0,02</td>
<td>25</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{oss})</td>
<td>15</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{GSS})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>(r_g)</td>
<td>-4/15</td>
<td>800</td>
<td>80</td>
</tr>
<tr>
<td>Short-circuit input capacitance</td>
<td>(C_{iss})</td>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Short-circuit output capacitance</td>
<td>(C_{oss})</td>
<td>0</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td>16</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{SD})</td>
<td>0</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>

Static

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink*</td>
<td>(R_{th(j-s)})</td>
<td>λ = 3,4 W/mK (PSX)</td>
<td>0,75</td>
<td>K/W</td>
</tr>
</tbody>
</table>

*Only valid with pre-applied Vincotech thermal interface material.

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>-4/15</td>
<td>600</td>
<td>64</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>(R_{on} = 2 \Omega) (R_{off} = 2 \Omega)</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>-4/15</td>
<td>600</td>
<td>64</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>(R_{on} = 2 \Omega) (R_{off} = 2 \Omega)</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>(E_{on})</td>
<td>(ΔP_{on} = 0,776 \mu C) (ΔP_{on} = 1,06 \mu C) (ΔP_{on} = 1,17 \mu C)</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>(E_{off})</td>
<td>(ΔP_{off})</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CE}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{F}</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{C}</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{D}</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{F}</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>$[°C]$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Deviation of R_{Th}</td>
<td>ΔR</td>
<td>$R_{Th} = 493 \Omega$</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>245</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>d</td>
<td></td>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>Tol. ±2 %</td>
<td>3375</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/100}$</td>
<td>Tol. ±2 %</td>
<td>3437</td>
<td>K</td>
</tr>
</tbody>
</table>

Vincotech Thermistor Reference: K
H-Bridge Switch - Lo side Characteristics

Figure 1.
Typical output characteristics

\[I_D = f(V_{DS}) \]

- \(t_p = 250 \mu s \)
- \(I_T = 14 \) V
- \(T_j \): 25 °C, 125 °C, 150 °C

Figure 2.
Typical output characteristics

\[I_D = f(V_{DS}) \]

- \(t_p = 250 \mu s \)
- \(V_GS \): from -20 V to 20 V in steps of 2 V
- \(V_{DS} \):
 - -20 V
 - -18 V
 - -16 V
 - -14 V
 - -12 V
 - -10 V
 - -8 V
 - -6 V
 - -4 V
 - -2 V
 - 0 V
 - 2 V
 - 4 V
 - 6 V
 - 8 V
 - 10 V
 - 12 V
 - 14 V
 - 16 V
 - 18 V
 - 20 V

Figure 3.
Typical transfer characteristics

\[I_D = f(V_{GS}) \]

- \(t_p = 250 \mu s \)
- \(V_{DS} = 10 \) V
- \(T_j \): 25 °C, 125 °C, 150 °C

Figure 4.
Transient thermal impedance as a function of pulse width

\[Z_{th}(s) = f(t_p) \]

- \(D = \frac{t_p}{T} \)
- \(R_{th} = 0.752 \) K/W

IGBT thermal model values

\[R (K/W) \quad t (s) \]

- 5.19E-02 2.61E+00
- 9.26E-02 5.45E-01
- 3.53E-01 9.51E-02
- 1.55E-01 2.37E-02
- 6.57E-02 3.84E-03
- 3.38E-02 5.95E-04
H-Bridge Switch - Lo side Characteristics

Figure 5. MOSFET Safe operating area

\[I_C = f(V_{CE}) \]

\(D = \) single pulse

\(T_s = 80 \, ^\circ C \)

\(V_{GE} = 14 \, V \)

\(T_j = T_{j_{max}} \)
H-Bridge Switch - Hi side Characteristics

Figure 6. MOSFET
Typical output characteristics

\[I_D = f(V_{DS}) \]
\[t_{p} = 250 \, \mu s \]
\[V_{GS} = 14 \, V \]

Figure 7. MOSFET
Typical output characteristics

\[I_D = f(V_{DS}) \]
\[t_{p} = 250 \, \mu s \]
\[V_{GS} = 14 \, V \]
\[T_j = 150 \, ^\circ C \]

VGS from -20 V to 20 V in steps of 2 V

Figure 8. MOSFET
Typical transfer characteristics

\[I_D = f(V_{GS}) \]
\[t_{p} = 250 \, \mu s \]
\[V_{DS} = 10 \, V \]

Figure 9. MOSFET
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_{p}) \]
\[D = \frac{t_{p}}{T} \]
\[R_{th(j-s)} = 0.752 \, K/W \]

IGBT thermal model values

\[R \, (K/W) \quad \tau \, (s) \]
5.19E-02 2.61E-01
9.26E-02 5.45E-01
3.53E-01 9.51E-02
1.55E-01 2.37E-02
6.57E-02 3.84E-03
3.38E-02 5.95E-04
H-Bridge Switch - Hi side Characteristics

Figure 10. MOSFET Safe operating area

\[I_C = f(V_{CE}) \]

\[D = \text{single pulse} \]

\[T_s = 80 \degree C \]

\[V_{GE} = 14 \text{ V} \]

\[T_j = T_{j\text{max}} \]
H-Bridge Switching Characteristics - Lo side

Figure 11.
MOSFET
Typical switching energy losses as a function of drain current

$$E = f(I_D)$$

With an inductive load at:
- $V_{DS} = 600 \text{ V}$
- $V_{GS} = -\frac{4}{15} \text{ V}$
- $R_{gon} = 2 \text{ Ω}$
- $R_{goff} = 2 \text{ Ω}$
- T_j: 25 °C, 125 °C, 150 °C

Figure 12.
MOSFET
Typical switching energy losses as a function of gate resistor

$$E = f(R_g)$$

With an inductive load at:
- $V_{DS} = 600 \text{ V}$
- $V_{GS} = -\frac{4}{15} \text{ V}$
- $I_D = 64 \text{ A}$
- T_j: 25 °C, 125 °C, 150 °C

Figure 13.
MOSFET
Typical reverse recovery energy loss as a function of drain current

$$E_{rec} = f(I_D)$$

With an inductive load at:
- $V_{DS} = 600 \text{ V}$
- $V_{GS} = -\frac{4}{15} \text{ V}$
- $R_{gon} = 2 \text{ Ω}$
- T_j: 25 °C, 125 °C, 150 °C

Figure 14.
MOSFET
Typical reverse recovery energy loss as a function of gate resistor

$$E_{rec} = f(R_g)$$

With an inductive load at:
- $V_{DS} = 600 \text{ V}$
- $V_{GS} = -\frac{4}{15} \text{ V}$
- $I_D = 64 \text{ A}$
- T_j: 25 °C, 125 °C, 150 °C
H-Bridge Switching Characteristics - Lo side

Figure 15. MOSFET
Typical switching times as a function of drain current

$t = f(I_D)$

With an inductive load at

- $V_{DS} = 600 \, \text{V}$
- $V_{GS} = -4/15 \, \text{V}$
- $R_{gon} = 2 \, \Omega$
- $R_{goff} = 2 \, \Omega$
- $T_j = 150 \, ^\circ\text{C}$

Figure 16. MOSFET
Typical switching times as a function of gate resistor

$t = f(R_g)$

With an inductive load at

- $V_{DS} = 600 \, \text{V}$
- $V_{GS} = -4/15 \, \text{V}$
- $I_D = 64 \, \text{A}$
- $T_j = 150 \, ^\circ\text{C}$

Figure 17. MOSFET
Typical reverse recovery time as a function of drain current

$t_{rr} = f(I_D)$

At

- $V_{DS} = 600 \, \text{V}$
- $V_{GS} = -4/15 \, \text{V}$
- $R_{gon} = 2 \, \Omega$

- $T_j = 25 \, ^\circ\text{C}$
- $T_j = 125 \, ^\circ\text{C}$
- $T_j = 150 \, ^\circ\text{C}$

Figure 18. MOSFET
Typical reverse recovery time as a function of turn on gate resistor

$t_{rr} = f(R_{gon})$

At

- $V_{DS} = 600 \, \text{V}$
- $V_{GS} = -4/15 \, \text{V}$
- $I_D = 64 \, \text{A}$

- $T_j = 25 \, ^\circ\text{C}$
- $T_j = 125 \, ^\circ\text{C}$
- $T_j = 150 \, ^\circ\text{C}$
H-Bridge Switching Characteristics - Lo side

Figure 19. MOSFET
Typical recovered charge as a function of drain current
\(Q_r = f(I_D) \)

Figure 20. MOSFET
Typical recovered charge as a function of turn on gate resistor
\(Q_r = f(R_{gon}) \)

Figure 21. MOSFET
Typical peak reverse recovery current as a function of drain current
\(I_{RM} = f(I_D) \)

Figure 22. MOSFET
Typical peak reverse recovery current as a function of turn on gate resistor
\(I_{RM} = f(R_{gon}) \)
H-Bridge Switching Characteristics - Lo side

Figure 23. MOSFET
Typical rate of fall of forward and reverse recovery current as a function of drain current
\(\frac{di}{dt}, \frac{di_{rr}}{dt} = f(I_D) \)

\[
\begin{align*}
\text{At } & V_{GS} = 600 \text{ V} \\
& V_{DS} = -4/15 \text{ V} \\
& R_{xon} = 2 \Omega \\
& R_{xoff} = 2 \Omega \\
& T_j: 25 \text{ °C}, 125 \text{ °C}, 150 \text{ °C}
\end{align*}
\]

Figure 24. MOSFET
Typical rate of fall of forward and reverse recovery current as a function of turn on gate resistor
\(\frac{di}{dt}, \frac{di_{rr}}{dt} = f(R_{gon}) \)

\[
\begin{align*}
\text{At } & V_{GS} = 600 \text{ V} \\
& V_{DS} = -4/15 \text{ V} \\
& I_D = 64 \text{ A} \\
& T_j: 25 \text{ °C}, 125 \text{ °C}, 150 \text{ °C}
\end{align*}
\]

Figure 25. MOSFET
Reverse bias safe operating area
\(I_D = f(V_{ds}) \)

\[
\begin{align*}
\text{At } & T_j = 150 \text{ °C} \\
& R_{xoff} = 2 \Omega \\
& R_{xon} = 2 \Omega
\end{align*}
\]
H-Bridge Switching Characteristics - Hi side

Figure 26. MOSFET
Typical switching energy losses as a function of drain current

\[E = f(I_D) \]

With an inductive load at

- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω
- \(T_j: 25 \) °C, 125 °C, 150 °C

Figure 27. MOSFET
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(I_D = 64 \) A
- \(T_j: 25 \) °C, 125 °C, 150 °C

Figure 28. MOSFET
Typical reverse recovered energy loss as a function of drain current

\[E_{rec} = f(I_D) \]

With an inductive load at

- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(R_{gon} = 2 \) Ω

Figure 29. MOSFET
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(I_D = 64 \) A
- \(T_j: 25 \) °C, 125 °C, 150 °C
H-Bridge Switching Characteristics - Hi side

Figure 30. MOSFET
Typical switching times as a function of drain current

$t = f(I_D)$

With an inductive load at
- $V_{DS} = 600$ V
- $V_{GS} = -4/15$ V
- $R_{gon} = 2$ Ω
- $R_{goff} = 2$ Ω
- $T_j = 150$ °C

Figure 31. MOSFET
Typical switching times as a function of gate resistor

$t = f(R_g)$

With an inductive load at
- $V_{DS} = 600$ V
- $V_{GS} = -4/15$ V
- $I_D = 64$ A
- $T_j = 150$ °C

Figure 32. MOSFET
Typical reverse recovery time as a function of drain current

$\tau_{rr} = f(I_D)$

At $V_{DS} = 600$ V
- $V_{GS} = -4/15$ V
- $R_{gon} = 2$ Ω

Figure 33. MOSFET
Typical reverse recovery time as a function of turn on gate resistor

$\tau_{rr} = f(R_{gon})$

At $V_{DS} = 600$ V
- $V_{GS} = -4/15$ V
- $I_D = 64$ A

Copyright Vincotech
H-Bridge Switching Characteristics - Hi side

Figure 34. MOSFET
Typical recovered charge as a function of drain current

\[Q_r = f(I_D) \]

<table>
<thead>
<tr>
<th>(Q_r (\mu C))</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_D (A))</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
</tr>
</tbody>
</table>

Conditions:
- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(R_{gon} = 2 \) Ω

Figure 35. MOSFET
Typical recovered charge as a function of turn on gate resistor

\[Q_r = f(R_{gon}) \]

<table>
<thead>
<tr>
<th>(Q_r (\mu C))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{gon} (\Omega))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Conditions:
- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(I_D = 64 \) A

Figure 36. MOSFET
Typical peak reverse recovery current as a function of drain current

\[I_{RM} = f(I_D) \]

<table>
<thead>
<tr>
<th>(I_{RM} (A))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_D (A))</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions:
- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(R_{gon} = 2 \) Ω

Figure 37. MOSFET
Typical peak reverse recovery current as a function of turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

<table>
<thead>
<tr>
<th>(I_{RM} (A))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{gon} (\Omega))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Conditions:
- \(V_{DS} = 600 \) V
- \(V_{GS} = -4/15 \) V
- \(I_D = 64 \) A
H-Bridge Switching Characteristics - Hi side

Figure 38. MOSFET
Typical rate of fall of forward and reverse recovery current as a function of drain current
\(\frac{di}{dt}, \frac{d_{irr}}{dt} = f(I_D)\)

<table>
<thead>
<tr>
<th>di/dt (A/μs)</th>
<th>ID (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>125</td>
</tr>
</tbody>
</table>

At
- \(V_{DS} = 600\) V
- \(V_G = -4/15\) V
- \(T_j = 25\) °C
- \(T_j = 125\) °C
- \(T_j = 150\) °C

Figure 39. MOSFET
Typical rate of fall of forward and reverse recovery current as a function of turn on gate resistor
\(\frac{di}{dt}, \frac{d_{irr}}{dt} = f(R_{gon})\)

<table>
<thead>
<tr>
<th>di/dt (A/μs)</th>
<th>R_{gon} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

At
- \(V_{DS} = 600\) V
- \(V_G = -4/15\) V
- \(I_D = 64\) A
- \(T_j = 25\) °C
- \(T_j = 125\) °C
- \(T_j = 150\) °C

Figure 40. MOSFET
Reverse bias safe operating area
\(I_D = f(V_{DS})\)

<table>
<thead>
<tr>
<th>ID (A)</th>
<th>V_{DS} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>125</td>
<td>150</td>
</tr>
</tbody>
</table>

At
- \(T_j = 150\) °C
- \(R_{gon} = 2\) Ω
- \(R_{goff} = 2\) Ω
Switching Definitions

Figure 41. MOSFET
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} ($t_{Eoff} = \text{integrating time for } E_{off}$)

Figure 42. MOSFET
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} ($t_{Eon} = \text{integrating time for } E_{on}$)

Figure 43. MOSFET
Turn-off Switching Waveforms & definition of t_f

Figure 44. MOSFET
Turn-on Switching Waveforms & definition of t_r
Switching Definitions

Figure 45. Turn-off Switching Waveforms & definition of t_{rr}

Figure 46. Turn-on Switching Waveforms & definition of $t_{Qrr} \quad (t_{Qrr} = \text{integrating time for } Q_{rr})$

Figure 47. Turn-on Switching Waveforms & definition of $t_{Erec} \quad (t_{Erec} = \text{integrating time for } E_{rec})$
Pinout

![Pinout Diagram]

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2, T4</td>
<td>MOSFET</td>
<td>1200 V</td>
<td>15 mΩ</td>
<td>H-Bridge Switch - Lo side</td>
<td></td>
</tr>
<tr>
<td>T1, T3</td>
<td>MOSFET</td>
<td>1200 V</td>
<td>16 mΩ</td>
<td>H-Bridge Switch - Hi side</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>Thermistor</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.