
$^{30}~I_{out}\left( A\right)$ 



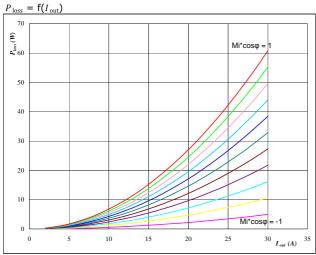
flow PACK 0B

# **Output Inverter Application**

1200 V / 15 A



3phase SPWM  $V_{\text{GEon}} = 15 \text{ V}$ 


 $V_{\text{GEoff}}$  = -15 V

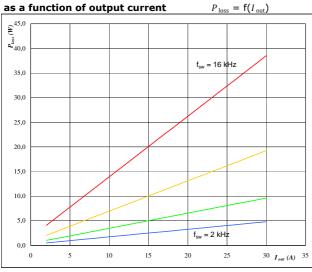
32 Ω =  $R_{\rm gon}$ 

R goff 32 Ω

figure 1. IGBT

Typical average static loss as a function of output current




Αt

$$T_i = 150$$
 °C

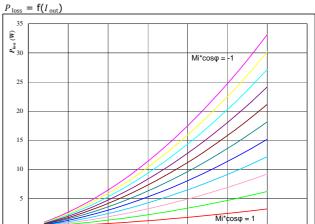
 $Mi*cos\phi$  from -1 to 1 in steps of 0,2

IGBT figure 3.

Typical average switching loss



Αt


$$T_{\rm j} = 150$$
 °C

DC-link = 600٧

 $f_{sw}$  from 2 kHz to 16 kHz in steps of factor 2

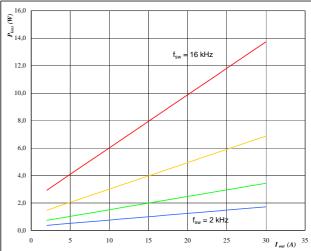


Typical average static loss as a function of output current



Αt

$$T_i = 150$$
 °C


 $Mi*cos\phi$  from -1 to 1 in steps of 0,2

#### FWD figure 4. Typical average switching loss

20

as a function of output current

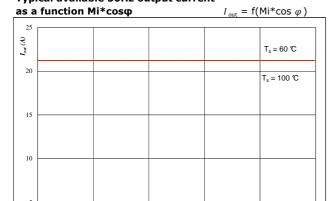
 $P_{\text{loss}} = f(I_{\text{out}})$ 



Αt

$$T_{\rm j} = 150$$
 °C DC-link = 600 V

 $f_{sw}$  from 2 kHz to 16 kHz in steps of factor 2

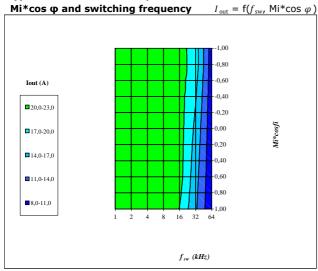



#### flow PACK 0B

# **Output Inverter Application**

1200 V / 15 A

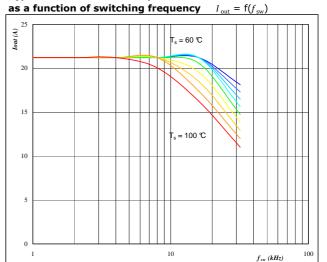
#### figure 5. Phase Typical available 50Hz output current




Αt

°C 150 DC-link = 600V 4 kHz

 $f_{\rm sw} =$  $T_{\rm s}$  from 60 °C to 100 °C in steps of 5 °C


#### figure 7. Phase Typical available 50Hz output current as a function of



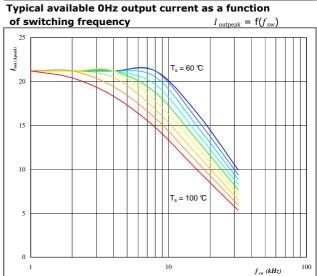
Αt

$$T_{\rm j} = 150$$
 °C DC-link = 600 V  $T_{\rm s} = 80$  °C





Αt


Mi\*cos φ

°C 150 DC-link = 600

 $Mi*cos \phi = 0.8$ 

60 °C to 100 °C in steps of 5 °C

## Phase



Αt

 $T_j =$ 150 °C DC-link = 600

 $T_{\rm s}$  from 60 °C to 100 °C in steps of 5 °C

Mi = 0



Typical efficiency as a function of output power



Inverter

 $P_{out}^{16,0}(kW)$  18,0



flow PACK 0B

## **Output Inverter Application**

figure 10.

99,0

98,0 97,0

96.0

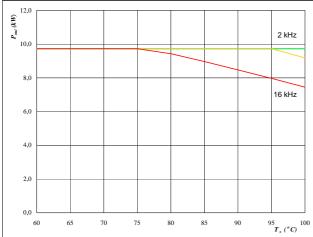
95,0 94,0

93,0 92,0

91,0

90,0


efficiency =  $f(P_{out})$ 


1200 V / 15 A

2 kHz

16 kHz

# figure 9. Inverter





Αt

 $T_{\rm j} = 150$  °C

DC-link = 600 V

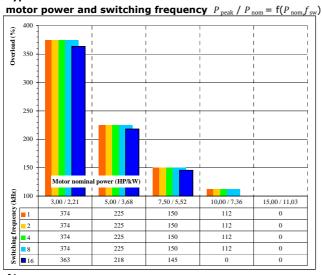
Mi = 1

 $\cos \phi = 0.80$ 

 $f_{\rm sw}$  from 2 kHz to 16 kHz in steps of factor 2

Αt

 $T_{\rm j} = 150$  °C


DC-link = 600 V

Mi = 1 $\cos \phi = 0.80$ 

 $f_{\rm sw}$  from 2 kHz to 16 kHz in steps of factor 2

#### figure 11. Inverter

### Typical available overload factor as a function of



#### Αt

 $T_{\rm j} = 150$  °C DC-link = 600 V

Mi = 1

cos φ= 0,8

 $f_{\rm sw}$  from 1 kHz to 16 kHz in steps of factor 2

 $T_s = 80$  °C

Motor eff = 0,85