
10-0B126PA008SC-M998F09

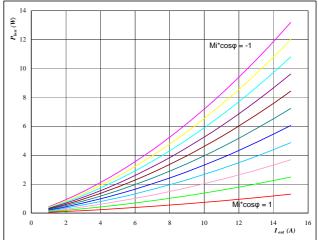
datasheet

Output Inverter Application

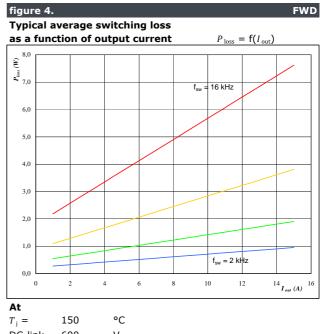
1200 V / 8 A


General conditions				
3phase SPWM				
V _{GEon}	=	15 V		
V _{GEoff}	=	-15 V		
R gon	=	32 Ω		
R _{goff}	=	32 Ω		

 $T_{\rm j}$ = 150 °C Mi*cos ϕ from -1 to 1 in steps of 0,2



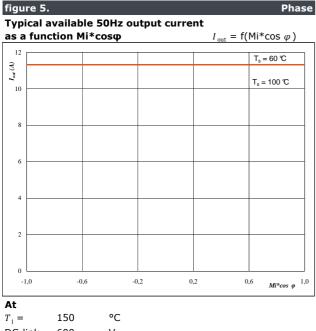
Typical average switching loss


IGBT

Mi*cos ϕ from -1 to 1 in steps of 0,2

°C

150

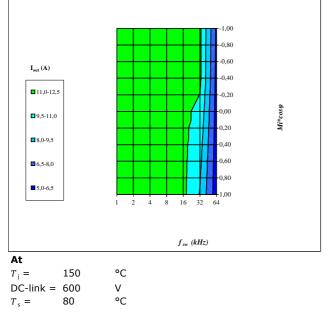

10-0B126PA008SC-M998F09

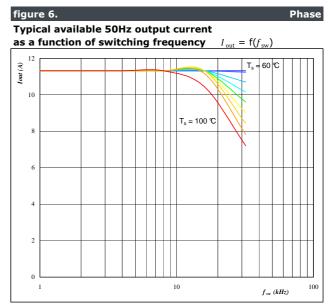
datasheet

Phase

Output Inverter Application

1200 V / 8 A




$I_j =$	150	°C
DC-link =	600	V
$f_{sw} =$	4	kHz

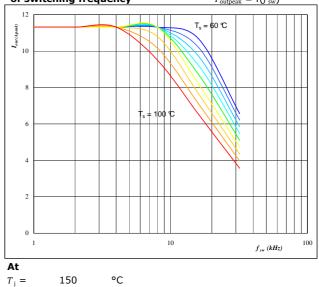
 $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

figure 7.

Typical available 50Hz output current as a function ofMi*cos φ and switching frequency $I_{out} = f(f_{swr}, Mi*cos φ)$

At

Phase


 $T_{\rm j} = 150$ °C DC-link = 600 V

DC-link = 600Mi*cos $\phi = 0.8$

 $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

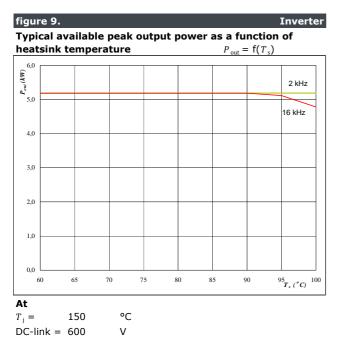
figure 8.

Typical available 0Hz output current as a functionof switching frequency $I_{outpeak} = f(f_{sw})$

DC-link = 600 V T_s from 60 °C to 100 °C in steps of 5 °C

Mi = 0

10-0B126PA008SC-M998F09

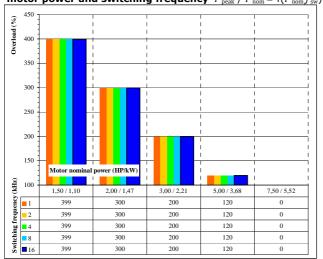

datasheet

Inverter

flow PACK 0B

Output Inverter Application

1200 V / 8 A

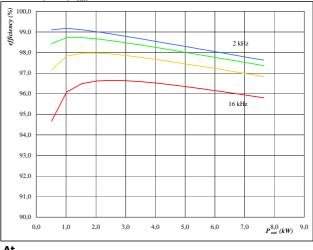

Mi = 1

0,80 $\cos \phi =$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

figure 11.

Typical available overload factor as a function of motor power and switching frequency $P_{\text{peak}} / P_{\text{nom}} = f(P_{\text{nom}} f_{\text{sw}})$



At

 $T_i =$ 150 °C DC-link = 600V Mi = 1 $\cos \phi =$ 0,8 $f_{\rm sw}$ from 1 kHz to 16 kHz in steps of factor 2 $T_s =$ 80 °C Motor eff = 0,85

figure 10.

Typical efficiency as a function of output power efficiency = $f(P_{out})$

At

Inverter

 $T_i =$ 150 °C

DC-link = 600

Mi = 1

0,80 cos φ=

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

V