

10-0B126PA004SC-M997F09

datasheet

FWD

Output Inverter Application

1200 V / 4 A

General conditions			
3phase SPWM			
V _{GEon}	=	15 V	
V _{GEoff}	=	-15 V	
R gon	=	64 Ω	
R _{goff}	=	64 Ω	

 $T_{\rm j}$ = 150 °C Mi*cos ϕ from -1 to 1 in steps of 0,2

Typical average switching loss as a function of output current

 $T_i =$

Mi*cos ϕ from -1 to 1 in steps of 0,2

°C

150

figure 4.

IGBT

Typical average switching loss as a function of output current

DC-link = 600 V f_{sw} from 2 kHz to 16 kHz in steps of factor 2

10-0B126PA004SC-M997F09

datasheet

Phase

Output Inverter Application

1200 V / 4 A

$T_{j} =$	150	°C
DC-link =	600	V
$f_{sw} =$	4	kHz

60 °C to 100 °C in steps of 5 °C $T_{\rm s}$ from

figure 7.

Typical available 50Hz output current as a function of **Mi*cos** ϕ and switching frequency $I_{out} = f(f_{sw}, Mi*cos \phi)$

At

°C $T_{i} =$ 150

DC-link = 600

Mi*cos φ =0,8

 $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

V

figure 8.

Phase

Typical available OHz output current as a function of switching frequency $I_{\text{outpeak}} = f(f_{\text{sw}})$

DC-link = 600V $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

Mi = 0

10-0B126PA004SC-M997F09

datasheet

Inverter

Output Inverter Application

1200 V / 4 A

DC-link = 600 V 1

Mi = $\cos \phi =$

0,80 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

figure 11.

Typical available overload factor as a function of motor power and switching frequency $P_{\text{peak}} / P_{\text{nom}} = f(P_{\text{nom}} f_{\text{sw}})$

At

 $T_i =$ 150 °C DC-link = 600V Mi = 1 $\cos \phi =$ 0,8 $f_{\rm sw}$ from 1 kHz to 16 kHz in steps of factor 2 $T_s =$ 80 °C Motor eff = 0,85

figure 10.

Typical efficiency as a function of output power efficiency = $f(P_{out})$

At

Inverter

 $T_i =$ 150 °C

DC-link = 600

Mi = 1

 $\cos \phi =$ 0,80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

٧