flow PIM 0B + PFC

Features
- Converter, PFC, inverter in one housing
- New high speed IGBT for PFC
- One screw heatsink mounting

Target applications
- Embedded drives

Types
- 10-OB06PPA004RC-L022A09

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T=\max$</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{Pulse}</td>
<td>T_p $\leq T_{\max}$</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>I_T</td>
<td>$\leq 150^\circ$C, $V_{CE}=900V$</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{M}</td>
<td>$T=\max$</td>
<td>37</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}, V_{CC}</td>
<td>$T=150^\circ$C, $V_{GE}=15V$</td>
<td>5, 400</td>
<td>μs, V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{\max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Copyright Vincotech

07 Feb. 2017 / Revision 4
PFC Switch Protection Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{fsm}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{f}</td>
<td>$T_J= T_{max}$, $T_i=85^\circ C$</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{f RMS}$</td>
<td></td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive peak surge current</td>
<td>$I_{f RMS}$</td>
<td>60Hz Single Half Sine Wave</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{f}</td>
<td>$T_J= T_{max}$, $T_i=85^\circ C$</td>
<td>32</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td></td>
<td>T_{max}</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Rectifier Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{fsm}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>$I_{f AV}$</td>
<td>$T_J= T_{max}$, $T_i=85^\circ C$</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive peak surge current</td>
<td>$I_{f RMS}$</td>
<td>60Hz Single Half Sine Wave</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{f}</td>
<td>$T_J= T_{max}$, $T_i=85^\circ C$</td>
<td>34</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td></td>
<td>T_{max}</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Characteristic Values

Inverter Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{ce}=V_{ce}$</td>
<td>0.090075</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>5.6</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>15</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>2.20</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>I_{ZS}</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>2</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ZSS}</td>
<td></td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{Gate}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>f=1 MHz</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>f=1 MHz</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{Refr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td></td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance to heatsink</td>
<td>R_{Thm}</td>
<td>Phase-Change Material X=3.4W/mK</td>
<td>2.60</td>
<td>K/W</td>
</tr>
<tr>
<td>IGBT Switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>Rgs=64Ω Rgds=64Ω</td>
<td>±15</td>
<td>400</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>Rgs=64Ω Rgds=64Ω</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>25</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>81</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>Rgs=64Ω Rgds=64Ω</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>QhFV=0.2μC QhFV=0.4μC</td>
<td>25</td>
<td>0.049</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>QhFV=0.2μC QhFV=0.4μC</td>
<td>25</td>
<td>0.073</td>
</tr>
<tr>
<td>FVID Switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>$I_{recover}$</td>
<td>dI/dt=447A/μs</td>
<td>±15</td>
<td>400</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>$t_{recover}$</td>
<td>dI/dt=196A/μs</td>
<td>±15</td>
<td>400</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>$Q_{recover}$</td>
<td>dI/dt=196A/μs</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>$E_{recover}$</td>
<td>dI/dt=196A/μs</td>
<td>25</td>
<td>0.086</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI/dt</td>
<td>dI/dt=196A/μs</td>
<td>25</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>45</td>
</tr>
</tbody>
</table>
PFC Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>VGE</td>
<td>0.6004</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation</td>
<td>VCE</td>
<td>15</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>ICE</td>
<td>0</td>
<td>25</td>
<td>µA</td>
</tr>
<tr>
<td>GTO-emitter leakage current</td>
<td>IGTO</td>
<td>20</td>
<td>25</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>Rint</td>
<td>none</td>
<td>24</td>
<td>pF</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Cin</td>
<td>930</td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Coss</td>
<td>0</td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>Ciss</td>
<td>4</td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Qg</td>
<td>15</td>
<td>25</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>Rth</td>
<td>2.14</td>
<td></td>
<td>K/W</td>
</tr>
<tr>
<td>IGBT Switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>τon</td>
<td>15/0</td>
<td>63</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>tR</td>
<td>Rg=320Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>τoff</td>
<td>Rg=320Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>tf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>Eon</td>
<td>≈0.3µC</td>
<td></td>
<td>mW/s</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>Eoff</td>
<td>≈0.5µC</td>
<td></td>
<td>mW/s</td>
</tr>
</tbody>
</table>
PFC Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V _\text{F})</td>
<td>15, 25°C, 125°C, 150°C</td>
<td>1.44, 1.33, 1.29</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(\text{I}_{\text{R}})</td>
<td>550, 25°C, 150°C</td>
<td>0.94</td>
<td>(\text{A})</td>
</tr>
</tbody>
</table>

Static

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{\text{Th,JC}})</td>
<td>Phase Change Material (\lambda = 0.4 \text{W/mK})</td>
<td>2.19</td>
<td>K/W</td>
</tr>
</tbody>
</table>

FWD Switching

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak recovery current</td>
<td>(\text{I}_{\text{R}})</td>
<td>15/0, 400, 6</td>
<td>25, 125</td>
<td>9, 13</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(\text{t}_{\text{R}})</td>
<td>696/46, 46/43</td>
<td>25, 125</td>
<td>47, 64</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>(\text{Q}_{\text{R}})</td>
<td>696/46, 46/43</td>
<td>25, 125</td>
<td>0.026, 0.009</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(\text{E}_{\text{R}})</td>
<td>696/46, 46/43</td>
<td>25, 125</td>
<td>0.040, 0.005</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\text{d} \text{I}_{\text{R}}/\text{d} \text{t})</td>
<td>696/46, 46/43</td>
<td>25, 125</td>
<td>408, 917</td>
</tr>
</tbody>
</table>

PFC Protection Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V _\text{F})</td>
<td>6</td>
<td>25°C, 125°C, 150°C</td>
<td>1.73, 1.59, 1.54</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(\text{I}_{\text{L}})</td>
<td>650, 25°C, 150°C</td>
<td>0.1</td>
<td>(\text{mA})</td>
</tr>
</tbody>
</table>

Static

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{\text{Th,JC}})</td>
<td>Phase Change Material (\lambda = 0.4 \text{W/mK})</td>
<td>3.01</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Rectifier Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>7</td>
<td>1.04</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>1000</td>
<td>20</td>
<td>μA</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>$R_{h,s,t}$</td>
<td>Phase-Change Material $\lambda=3.4,\text{W/mK}$</td>
<td>2.09</td>
<td>kW/°C</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>25</td>
<td>21.5</td>
<td>kΩ</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1488,\Omega$</td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>25</td>
<td>210</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$B(25/50)$</td>
<td>25</td>
<td>3.5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td>25</td>
<td>3984</td>
<td>K</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Module Properties

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(Tmax - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>DC voltage</th>
<th>t=2s</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_{ui}</td>
<td></td>
<td></td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Inverter Switch Characteristics

Typical output characteristics

\[I_{C} = f(V_{CE}) \]

\[t_{p} = 250 \ \mu s \quad T_{j}: \ 25 \ ^{\circ}C \]

\[V_{CE} = 15 \ V \]

\[t_{p} = 250 \ \mu s \quad T_{j}: \ 125 \ ^{\circ}C, \ 150 \ ^{\circ}C \]

\[V_{CE} \text{ from } 7 \ V \text{ to } 17 \ V \text{ in steps of } 1 \ V \]

Typical transfer characteristics

\[I_{C} = f(V_{CE}) \]

\[t_{p} = 100 \ \mu s \quad T_{j}: \ 25 \ ^{\circ}C \]

\[V_{CE} = 10 \ V \]

\[t_{p} = 250 \ \mu s \quad T_{j}: \ 25 \ ^{\circ}C, \ 125 \ ^{\circ}C, \ 150 \ ^{\circ}C \]

Transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_{p}) \]

\[D = t_{p} / T \]

\[R_{th} = 2.60 \ K/W \]

IGBT thermal model values

- \(R \) (K/W)
- Tau (s)
- 7.48E-02, 2.66E-00, 1.91E-01, 1.40E+00, 4.54E-01, 4.75E-01
Inverter Switch Characteristics

Gate voltage vs Gate charge
IGBT

\[V_{GE} = f(Q_G) \]

Safe operating area
IGBT

\[I_C = f(V_{CE}) \]

- **At**
 - \(I_C = 4 \) A
 - Single pulse
 - \(T_s = 80 \) °C
 - \(V_{GE} = \pm 15 \) V
 - \(T_j = T_{j_{max}} \) °C

Short circuit duration as a function of \(V_{GE} \)
IGBT

\[t_{pS C} = f(V_{GE}) \]

- **At**
 - \(V_{CE} \leq 400 \) V
 - \(V_{CE} \leq 400 \) V
 - Start at \(T_j \leq 150 \) °C
 - Start at \(T_j \leq 25 \) °C

Typical short circuit current as a function of \(V_{GE} \)
IGBT

\[I_{SC} = f(V_{GE}) \]
PFC Switch Characteristics

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \mu s \)
- \(V_{CE} = 15 \text{ V} \)
- \(T_j: 25^\circ C \)
- \(125^\circ C \)
- \(150^\circ C \)

- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 100 \mu s \)
- \(V_{CE} = 10 \text{ V} \)
- \(T_j: 25^\circ C \)
- \(125^\circ C \)
- \(150^\circ C \)

Transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 2.14 \text{ K/W} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10E-01</td>
<td>1.85E+00</td>
</tr>
<tr>
<td>3.05E-01</td>
<td>2.58E-01</td>
</tr>
<tr>
<td>8.44E-01</td>
<td>6.42E-02</td>
</tr>
<tr>
<td>4.55E-01</td>
<td>1.26E-02</td>
</tr>
<tr>
<td>2.79E-01</td>
<td>3.05E-03</td>
</tr>
<tr>
<td>1.45E-01</td>
<td>4.84E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
PFC Switch Characteristics

Gate voltage vs Gate charge

IGBT

\[V_G = f(Q_g) \]

At
\[I_C = 15 \text{ A} \]

PFC Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

\[t_p = 250 \mu s \]

Transient thermal impedance as a function of pulse width

\[Z_{th}(j\omega) = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{th}(0) = 2.19 \text{ K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>T (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.49E-02</td>
<td>4.22E-00</td>
</tr>
<tr>
<td>1.67E-01</td>
<td>4.66E-01</td>
</tr>
<tr>
<td>9.76E-01</td>
<td>5.57E-02</td>
</tr>
<tr>
<td>5.62E-01</td>
<td>1.45E-02</td>
</tr>
<tr>
<td>3.00E-01</td>
<td>2.81E-03</td>
</tr>
<tr>
<td>1.17E-01</td>
<td>5.62E-04</td>
</tr>
</tbody>
</table>
PFC Protection Diode characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 250 \mu s \]

25 °C

125 °C

150 °C

\[\text{FWD thermal model values} \]

\[R (K/W) \]

5.15E-02 9.38E+00

9.53E-02 8.91E-01

3.22E-01 1.25E-01

1.35E+00 2.97E-02

8.32E-01 8.19E-03

3.58E-01 1.78E-03

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{adj} = 3.01 \text{ K/W} \]
Rectifier characteristics

Typical forward characteristics

I_F = f(V_F)

<table>
<thead>
<tr>
<th>V_F (V)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F (A)</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

- t_p = 250 µs
- 25 °C
- 125 °C
- 150 °C

Diode thermal model values

<table>
<thead>
<tr>
<th>R_th(j-W) (K/W)</th>
<th>τ_S (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.86E-02</td>
<td>1.03E+01</td>
</tr>
<tr>
<td>1.45E-01</td>
<td>6.91E-01</td>
</tr>
<tr>
<td>1.18E+00</td>
<td>6.09E-02</td>
</tr>
<tr>
<td>5.46E-01</td>
<td>1.88E-02</td>
</tr>
<tr>
<td>1.74E-01</td>
<td>1.96E-03</td>
</tr>
</tbody>
</table>

Transient thermal impedance as a function of pulse width

Z_th(j-s) = f(t_p)

- D = t_p / T
- R_θ(j-W) = 2.09 K/W

Thermistor Characteristics

Typical NTC characteristic

R_T = f(T)

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (Ω)</td>
<td>25000</td>
<td>20000</td>
<td>15000</td>
<td>10000</td>
<td>5000</td>
</tr>
</tbody>
</table>

- NT4-typical temperature characteristic

Copyright Vincotech
Inverter Switching Definitions

Figure 1.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

\[E_{\text{on}} \]

With an inductive load at 25 °C
- \(V_{ds} = 400 \) V
- \(T_j = 125 \) °C
- \(R_{gon} = 64 \Omega \)
- \(I_C = 4 \) A

\[E_{\text{off}} \]

Figure 2.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

\[E_{\text{on}} \]

With an inductive load at 25 °C
- \(V_{ds} = 400 \) V
- \(T_j = 125 \) °C
- \(V_{gs} = \pm 15 \) V
- \(l_I = 4 \) A

\[E_{\text{off}} \]

Figure 3.
Typical reverse recovery energy loss as a function of collector current

\[E_{\text{rec}} = f(I_C) \]

\[E_{\text{rec}} \]

With an inductive load at 25 °C
- \(V_{ds} = 400 \) V
- \(T_j = 125 \) °C
- \(V_{gs} = \pm 15 \) V
- \(R_{goff} = 64 \Omega \)

\[E_{\text{rec}} \]

Figure 4.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{\text{rec}} = f(R_G) \]

\[E_{\text{rec}} \]

With an inductive load at 25 °C
- \(V_{ds} = 400 \) V
- \(T_j = 125 \) °C
- \(V_{gs} = \pm 15 \) V
- \(l_I = 4 \) A
Inverter Switching Definitions

Figure 5. Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{on} = 64 \, \Omega \)
- \(I_C = 4 \, \text{A} \)

Figure 6. Typical switching times as a function of gate resistor

\[t = f(R_{on}) \]

With an inductive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(i_C = 4 \, \text{A} \)

Figure 7. Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(T_j = 125 \, ^\circ\text{C} \)
- \(T_j = 150 \, ^\circ\text{C} \)
- \(R_{on} = 64 \, \Omega \)

Figure 8. Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{on}) \]

At

- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(T_j = 125 \, ^\circ\text{C} \)
- \(i_C = 4 \, \text{A} \)
- \(T_j = 150 \, ^\circ\text{C} \)
Inverter Switching Definitions

Figure 9. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

\(V_{CE} = 400 \text{ V} \)
\(T_j = 25 ^\circ \text{C} \)
\(R_{gon} = 64 \Omega \)

\(V_{CE} = 815 \text{ V} \)
\(T_j = 125 ^\circ \text{C} \)
\(R_{gon} = 64 \Omega \)

\(V_{CE} = 400 \text{ V} \)
\(T_j = 150 ^\circ \text{C} \)

Figure 10. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

\(V_{CE} = 400 \text{ V} \)
\(T_j = 25 ^\circ \text{C} \)
\(R_{gon} = 64 \Omega \)

\(V_{CE} = 815 \text{ V} \)
\(T_j = 125 ^\circ \text{C} \)
\(R_{gon} = 64 \Omega \)

\(V_{CE} = 400 \text{ V} \)
\(T_j = 150 ^\circ \text{C} \)

Figure 11. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 12. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]
Inverter Switching Definitions

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
d\frac{dI}{dt},d\frac{dI}{dt}=f(I_c)
\]
At
\[
V_{CE}=400\ \text{V}
\]
\[
V_{GE}=\pm15\ \text{V}
\]
\[
R_{gan}=64\ \Omega
\]

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of
IGBT turn-on gate resistor
At
\[
V_{CE}=400\ \text{V}
\]
\[
V_{GE}=\pm15\ \text{V}
\]
\[
I_c=4\ \text{A}
\]

Figure 15. IGBT
Reverse bias safe operating area
At
\[
T_{j}=175\ ^\circ\text{C}
\]
\[
R_{pm}=64\ \Omega
\]
\[
R_{pmt}=64,015\ \Omega
\]
Inverter Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tj</td>
<td>125 °C</td>
</tr>
<tr>
<td>Rgs</td>
<td>64 Ω</td>
</tr>
<tr>
<td>Rgoff</td>
<td>64 Ω</td>
</tr>
</tbody>
</table>

Figure 1. Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \) \(t_{\text{off}} \) (integrating time for \(E_{\text{off}} \))

\[V_{\text{GE}} (0\%) = -15 \text{ V} \]
\[V_{\text{CE}} (100\%) = 400 \text{ V} \]
\[I_{\text{C}} (100\%) = 4 \text{ A} \]
\[I_{\text{C}} = 0.098 \mu\text{s} \]
\[t_{\text{doff}} = 0.098 \mu\text{s} \]
\[t_{\text{off}} = 0.293 \mu\text{s} \]

Figure 2. Turn-on Switching Waveforms & definition of \(t_{\text{don}} \) \(t_{\text{on}} \) (integrating time for \(E_{\text{on}} \))

\[V_{\text{GE}} (0\%) = -15 \text{ V} \]
\[V_{\text{CE}} (100\%) = 400 \text{ V} \]
\[I_{\text{C}} (100\%) = 4 \text{ A} \]
\[I_{\text{C}} = 0.081 \mu\text{s} \]
\[t_{\text{don}} = 0.081 \mu\text{s} \]
\[t_{\text{on}} = 0.220 \mu\text{s} \]

Figure 3. Turn-off Switching Waveforms & definition of \(f \)

\[V_{\text{CE}} (100\%) = 400 \text{ V} \]
\[I_{\text{C}} (100\%) = 4 \text{ A} \]
\[I_{\text{C}} = 0.293 \mu\text{s} \]
\[t_{\text{f}} = 0.047 \mu\text{s} \]

Figure 4. Turn-on Switching Waveforms & definition of \(r \)

\[V_{\text{CE}} (100\%) = 400 \text{ V} \]
\[I_{\text{C}} (100\%) = 4 \text{ A} \]
\[I_{\text{C}} = 0.220 \mu\text{s} \]
Inverter Switching Definitions

Figure 5. IGBT

- $P_{on} (100\%) = 1.59$ kW
- $E_{on} (100\%) = 0.16$ mJ
- $t_{Eon} = 0.22 \mu$s

Figure 6. IGBT

- $P_{off} (100\%) = 1.59$ kW
- $E_{off} (100\%) = 0.08$ mJ
- $t_{Eoff} = 0.29 \mu$s

Figure 7. FWD

- $V_d (100\%) = 400$ V
- $I_d (100\%) = 4$ A
- $I_{fused} (100\%) = -4$ A
- $t_{rr} = 0.219 \mu$s
Inverter Switching Definitions

Figure 8. Turn-on Switching Waveforms & definition of t_{Qrr} (t_{Qrr} = integrating time for Q_{rr})

- I_{d} (100%) = 4 A
- Q_{rr} (100%) = 0.38 µC
- t_{Qrr} = 0.44 µs

Figure 9. Turn-on Switching Waveforms & definition of t_{Erec} (t_{Erec} = integrating time for E_{rec})

- P_{rec} (100%) = 1.59 kW
- E_{rec} (100%) = 0.10 mJ
- t_{Erec} = 0.44 µs
PFC Switching Definitions

Figure 1.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 400 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{gon} = 32 \Omega \)
- \(R_{goff} = 32 \Omega \)

Figure 2.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at 25 °C

- \(V_{CE} = 400 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{gon} = 32 \Omega \)
- \(R_{goff} = 32 \Omega \)

Figure 3.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 400 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{gon} = 32 \Omega \)
- \(R_{goff} = 32 \Omega \)

Figure 4.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at 25 °C

- \(V_{CE} = 400 \text{ V} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{gon} = 32 \Omega \)
- \(R_{goff} = 32 \Omega \)
PFC Switching Definitions

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(V_{CE} = 400 \, \text{V} \)
- \(V_{DS} = 15/0 \, \text{V} \)
- \(R_{GON} = 32 \, \Omega \)
- \(R_{GOFF} = 32 \, \Omega \)

\[T_j = 125 \, ^\circ\text{C} \]

\[V_{GE} = 15/0 \, \text{V} \]

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(V_{CE} = 400 \, \text{V} \)
- \(V_{DS} = 15/0 \, \text{V} \)
- \(R_{GON} = 32 \, \Omega \)

\[T_j = 125 \, ^\circ\text{C} \]

\[V_{GE} = 15/0 \, \text{V} \]

\[R_{GOFF} = 32 \, \Omega \]

\[T_j = 125 \, ^\circ\text{C} \]

\[R_{GON} = 32 \, \Omega \]

\[I_C = 6 \, \text{A} \]

\[V_{CE} = 400 \, \text{V} \]

\[V_{DS} = 15/0 \, \text{V} \]

\[R_{GOFF} = 32 \, \Omega \]

\[T_j = 125 \, ^\circ\text{C} \]

\[V_{GE} = 15/0 \, \text{V} \]

\[R_{GON} = 32 \, \Omega \]

\[T_j = 125 \, ^\circ\text{C} \]

\[I_C = 6 \, \text{A} \]

\[V_{CE} = 400 \, \text{V} \]

\[V_{DS} = 15/0 \, \text{V} \]

\[R_{GOFF} = 32 \, \Omega \]

\[T_j = 125 \, ^\circ\text{C} \]

\[V_{GE} = 15/0 \, \text{V} \]

\[R_{GON} = 32 \, \Omega \]

\[T_j = 125 \, ^\circ\text{C} \]

\[I_C = 6 \, \text{A} \]
PFC Switching Definitions

Figure 9. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- At \(V_{CE} = 400 \text{ V} \), \(25 \degree C \)
- \(V_{IN} = 15/0 \text{ V} \), \(T_J = 125 \degree C \)
- \(R_{gon} = 32 \text{ Ω} \), \(150 \degree C \)

Figure 10. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- At \(V_{CE} = 400 \text{ V} \), \(25 \degree C \)
- \(V_{IN} = 15/0 \text{ V} \), \(T_J = 125 \degree C \)
- \(i_n = 6 \text{ A} \), \(150 \degree C \)

Figure 11. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- At \(V_{CE} = 400 \text{ V} \), \(25 \degree C \)
- \(V_{IN} = 15/0 \text{ V} \), \(T_J = 125 \degree C \)
- \(R_{gon} = 32 \text{ Ω} \), \(150 \degree C \)

Figure 12. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- At \(V_{CE} = 400 \text{ V} \), \(25 \degree C \)
- \(V_{IN} = 15/0 \text{ V} \), \(T_J = 125 \degree C \)
- \(i_n = 6 \text{ A} \), \(150 \degree C \)
PFC Switching Definitions

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At
- \(V_{GE} = 15/0 \) V
- \(I_C = 6 \) A
- \(\Delta V_{CE} = 400 \) V
- \(\Delta R_{gon} = 32 \) Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

At
- \(V_{GE} = 15/0 \) V
- \(I_C = 6 \) A
- \(\Delta V_{CE} = 400 \) V
- \(\Delta R_{gon} = 32 \) Ω

Figure 15. IGBT
Reverse bias safe operating area

At
- \(T_J = 175 \) °C
- \(\Delta R_{gon} = 32 \) Ω
- \(\Delta R_{goff} = 32 \) Ω

\(I_c = f(V_{GE}) \)
PFC Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{ESR}</td>
<td>32 Ω</td>
</tr>
<tr>
<td>R_{DOff}</td>
<td>32 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{CE} (0\%) = 0$ V
- $V_{CE} (100\%) = 15$ V
- $V_C (100\%) = 400$ V
- $I_C (100\%) = 6$ A
- $t_{doff} = 0.191 \mu s$
- $t_{Eoff} = 0.235 \mu s$

Figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{CE} (0\%) = 0$ V
- $V_{CE} (100\%) = 15$ V
- $V_C (100\%) = 400$ V
- $I_C (100\%) = 6$ A
- $t_{don} = 0.017 \mu s$
- $t_{Eon} = 0.108 \mu s$

Figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

- $V_C (100\%) = 400$ V
- $I_C (10\%) = 6$ A
- $t_f = 0.004 \mu s$

Figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 400$ V
- $I_C (10\%) = 6$ A
- $t_r = 0.011 \mu s$
PFC Switching Definitions

Figure 5.
IGBT
Turn-off Switching Waveforms & definition of t\textsubscript{Eoff}

- \(P_{\text{off}}\) (100%) = 2.37 kW
- \(E_{\text{off}}\) (100%) = 0.06 mJ
- \(t_{\text{Eoff}}\) = 0.24 µs

Figure 6.
IGBT
Turn-on Switching Waveforms & definition of t\textsubscript{Eon}

- \(P_{\text{on}}\) (100%) = 2.37 kW
- \(E_{\text{on}}\) (100%) = 0.21 mJ
- \(t_{\text{Eon}}\) = 0.11 µs

Figure 7.
FWD
Turn-off Switching Waveforms & definition of t\textsubscript{rr}

- \(V_{\text{d}}\) (100%) = 400 V
- \(I_{\text{d}}\) (100%) = 6 A
- \(I_{\text{RRM}}\) (100%) = -13 A
- \(t_{\text{rr}}\) = 0.064 µs
PFC Switching Definitions

Figure 8. Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$ ($t_{Q_{rr}}$ = integrating time for Q_{rr})

$I_d (100\%) = 6$ A
$Q_{rr} (100\%) = 0.51$ µC
$t_{Q_{rr}} = 0.16$ µs

Figure 9. Turn-on Switching Waveforms & definition of $t_{E_{rec}}$ ($t_{E_{rec}}$ = integrating time for E_{rec})

$P_{rec} (100\%) = 2.37$ kW
$E_{rec} (100\%) = 0.10$ mJ
$t_{E_{rec}} = 0.16$ µs
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 17mm housing</td>
<td>10-0B06PPA010RC01-L025A19</td>
<td>L025A19</td>
<td>L025A19</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X [mm]</th>
<th>Y [mm]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24,7</td>
<td>0</td>
<td>DC-Rect</td>
</tr>
<tr>
<td>2</td>
<td>21,7</td>
<td>0</td>
<td>DC-PFC</td>
</tr>
<tr>
<td>3</td>
<td>18,7</td>
<td>0</td>
<td>G27</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>0</td>
<td>DC-3</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>0</td>
<td>G15</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>DC-2</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>G13</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>DC-1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>G11</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
<td>Therm2</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>5,8</td>
<td>Therm1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>10,8</td>
<td>G12</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>13,8</td>
<td>Ph1</td>
</tr>
<tr>
<td>14</td>
<td>5,7</td>
<td>13,8</td>
<td>G14</td>
</tr>
<tr>
<td>15</td>
<td>8,7</td>
<td>13,8</td>
<td>Ph2</td>
</tr>
<tr>
<td>16</td>
<td>14,4</td>
<td>13,8</td>
<td>Ph3</td>
</tr>
<tr>
<td>17</td>
<td>14,4</td>
<td>10,8</td>
<td>G16</td>
</tr>
<tr>
<td>18</td>
<td>19,7</td>
<td>9,3</td>
<td>DC+</td>
</tr>
<tr>
<td>19</td>
<td>22,9</td>
<td>13,8</td>
<td>PFC</td>
</tr>
<tr>
<td>20</td>
<td>27,9</td>
<td>13,8</td>
<td>ACIn1</td>
</tr>
<tr>
<td>21</td>
<td>27,9</td>
<td>6,95</td>
<td>ACIn2</td>
</tr>
<tr>
<td>22</td>
<td>23,05</td>
<td>6,95</td>
<td>DC+Rect</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Pinout

![Pinout Diagram](image)

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Technology</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11-T16</td>
<td>IGBT</td>
<td>600V</td>
<td></td>
<td>4A</td>
<td>Inverter switch</td>
<td></td>
</tr>
<tr>
<td>T27</td>
<td>IGBT</td>
<td>650V</td>
<td></td>
<td>15A</td>
<td>PFC Switch</td>
<td></td>
</tr>
<tr>
<td>D27</td>
<td>FWD</td>
<td>650V</td>
<td></td>
<td>15A</td>
<td>PFC Diode</td>
<td></td>
</tr>
<tr>
<td>D47</td>
<td>Diode</td>
<td>650V</td>
<td></td>
<td>6A</td>
<td>PFC Switch Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D31-D34</td>
<td>Diode</td>
<td>650V</td>
<td></td>
<td>7A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>Rs</td>
<td>NTC</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction
Handling instructions for flow 0 B packages see vincotech.com website.

Package data
Package data for flow 0 B packages see vincotech.com website.

UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

<table>
<thead>
<tr>
<th>Document No.:</th>
<th>Date:</th>
<th>Modification:</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-0B06PPA004RC-L022A09-D4-14</td>
<td>07 Feb. 2017</td>
<td>Packaging unit values changed</td>
<td>29</td>
</tr>
</tbody>
</table>

DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.