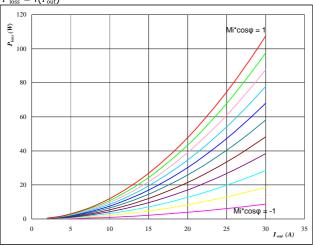


flow PACK 0B

Output Inverter Application

600 V / 6 A

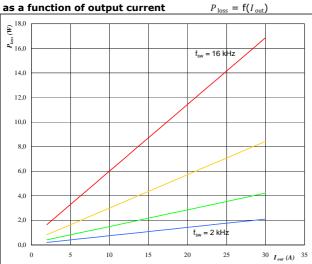
FWD



3phase SPWM $V_{\text{GEon}} = 15 \text{ V}$ V_{GEoff} = -15 V 64 Ω

= $R_{\rm gon}$ R goff 64 Ω

figure 1. IGBT


Αt

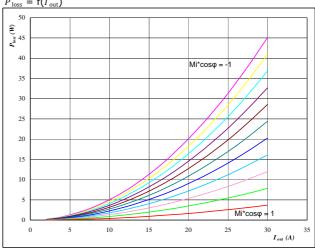
$$T_i = 125$$
 °C

 $Mi*cos\phi$ from -1 to 1 in steps of 0,2

IGBT figure 3.

Typical average switching loss

Αt

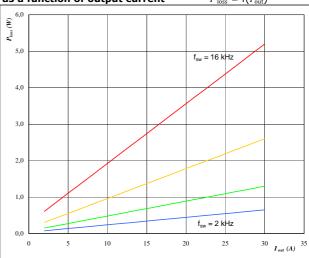

$$T_{\rm j} = 125$$
 °C

DC-link = 400٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

Αt


$$T_i = 125$$
 °C

 $Mi*cos\phi$ from -1 to 1 in steps of 0,2

figure 4.

Typical average switching loss

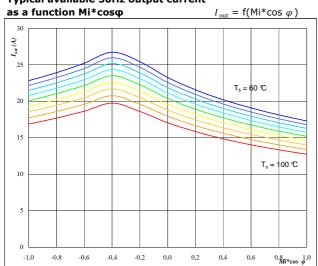
as a function of output current $P_{\text{loss}} = f(I_{\text{out}})$

Αt

$$T_{\rm j} = 125$$
 °C

DC-link = 400٧

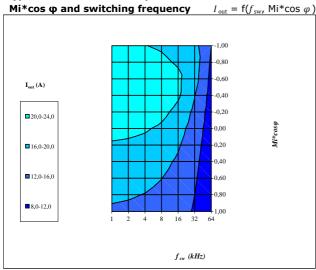
 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2



flow PACK 0B

Output Inverter Application

600 V / 6 A

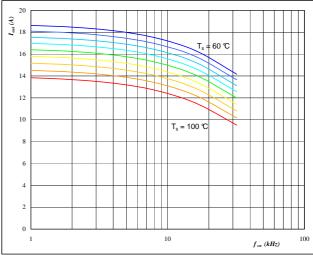


Αt

°C 125 DC-link = 400V kHz

 $f_{\rm sw} =$ $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

figure 7. Phase Typical available 50Hz output current as a function of


Αt

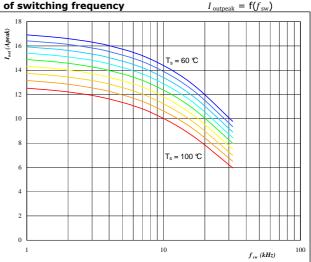
 $T_s =$

125 °C $T_j =$ DC-link = 40080 °C

as a function of switching frequency $I_{\text{out}} = f(f_{\text{sw}})$

Αt

°C 125


DC-link = 400

 $Mi*cos \phi = 0.8$

 $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

Phase

Typical available 0Hz output current as a function of switching frequency

Αt

 $T_j =$ 125 °C DC-link = 400

 $T_{\rm s}$ from 60 °C to 100 °C in steps of 5 °C

Mi = 0

Typical efficiency as a function of output power

flow PACK 0B

Output Inverter Application

figure 10.

99,0

97,0

96,0

95,0

94,0

93,0

92,0

91,0

90.0

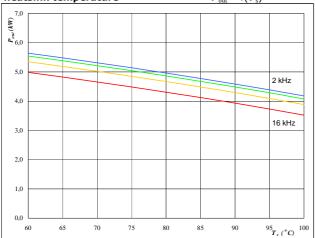
0.0

efficiency = $f(P_{out})$

600 V / 6 A

2 kHz


16 kHz


8.0

Inverter

 $^{10,0}P_{out}(kW)$ 12,0

figure 9. Inverter

Αt

 $T_{\rm j} = 125$ °C

DC-link = 400 V

Mi = 1 $\cos \phi = 0.80$

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

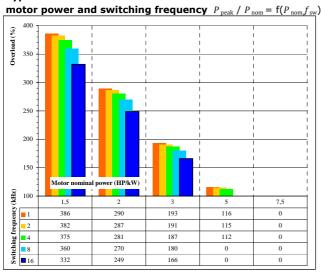
At

 $T_{\rm j}$ = 125 °C

2.0

4.0

6.0


DC-link = 400 V

Mi = 1 $\cos \phi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

figure 11. Inverter

Typical available overload factor as a function of

Αt

$$T_{\rm j} = 125$$
 °C

DC-link = 400 V

Mi = 1

 $\cos \phi = 0.8$

 $f_{\rm sw}$ from 1 kHz to 16kHz in steps of factor 2

 $T_s = 80$ °C

Motor eff = 0,85

copyright Vincotech 3 06 Jul. 2016 / Revision 1