


POWER MODULES

/ 2016-17

At Vincotech, we optimize our power modules to craft the perfect solution for your requirements. Our success hinges on knowing who you are, where you're coming from, and what you're aiming for. Count on us, as a reliable partner, to put your needs first.

EMPOWERING YOUR IDEAS

Vincotech, an independent company within the Mitsubishi Electric Corporation, is a market leader and your reliable partner in power modules.

Established and dependable, Vincotech is the partner of choice when it comes to designing and building power modules for motion control, renewable energy, and power supply applications, setting performance standards for both off-the-shelf and application-specific solutions.

An independently operating affiliate of Mitsubishi Electric Corporation staffed with around 500 people worldwide, Vincotech delivers fast, flexible and customer-focused solutions, service and support to empower customers' ideas.

Headquartered in Unterhaching near Munich, Germany, Vincotech also owns and operates a production site in Bicske, Hungary. This ISO / TS16949- and ISO14001-certified factory develops and manufactures all power modules.

Engineered to comply with the RoHS and REACH standards, these modules are subjected to a battery of electrical and functional tests prior to packaging to ensure they fully satisfy Vincotech's rigorous standards for quality.

The name Vincotech stands for highest product reliability, excellent customer service, and flexible, competitive solutions, all of which culminate in outstanding customer satisfaction.

A highly motivated and experienced engineering team at the R&D facility, supported by skilled technical service crews in all major regions, provides the underpinning for the company's strong technology portfolio.

Vincotech, your reliable partner of choice.

Vincotech lives by the principle of reliable partnership.

To this end, we communicate efficiently and dependably. We trust in our employees' capabilities. We are open, honest, reliable and as good as our word – or better.

We mean what we say and do what we say we're going to do. We put the customer's success first. And that is why customers and Vincotech are equal partners.

VINCOTECH - ABOUT US

PAGE 02 - 05

VINCOTECH TECHNOLOGY GROUPS

DIRECT PRESSED DCB

(BASEPLATE-LESS MODULES)
PAGE 08 - 09

DCB SUBSTRATE ON CU-BASEPLATE

[BASEPLATE-MODULES]
PAGE 08 - 09

THICK FILM BASED IPM PLATFORM

PAGE 08 - 09

DCB SUBSTRATE ON CU-BASEPLATE BASED IPM PLATFORM

PAGE 08 - 09

DBC SUBSTRATE ON CU-BASEPLATE WITH SCREW CONTACT

PAGE 08 - 09

DIRECT PRESSED DCB

(BASEPLATE-LESS MODULES WITH SPRING CONTACT) PAGE 08 - 09

VINCOTECH

ADVANCED MODULE TECHNOLOGY

SUPERIOR SUBSTRATES

PAGE 10 - 11

/ SI₃N₄ SUBSTRATE MATERIAL

/ ALN

INTERCONNECTION

PAGE 12 - 13

/ SINTERED AG

(DIE ATTACH TECHNOLOGY)

/ PHASE-CHANGE MATERIAL

/ PRESS-FIT TECHNOLOGY

EXCEPTIONAL HOUSINGS

PAGE 18 - 23

/ flow90 HOUSING

/ flow 0B HOUSING

VINco X

INTEGRATED SIMULATION ENVIRONMENT TOOL

PAGE 24 - 25

APPLICATION-SPECIFIC SOLUTIONS

PAGE 26 - 29

MARKETS & APPLICATIONS

PAGE 30 - 33

VINCOTECH

PRODUCT OVERVIEW

PAGE 34

/ TOPOLOGY

/ APPLICATION

HOUSINGS

VINCOTECH

PRODUCTS

SEVENPACK

CTIFIER	PAGE 36

43

PAGE 60 - 65

SIXPACK PAGE 44 - 55

SIXPACK + RECTIFIER PAGE 56 - 59

PIM PAGE 66 - 75

PIM + PFC PAGE 76 - 81

IPM CIP PAGE 82 - 85

IPM CI PAGE 86 - 89

HALF-BRIDGE PAGE 90 - 97

FULL-BRIDGE PAGE 98 - 109

PFC PAGE 110 - 113

RPI PAGE 114 - 117

ONE-PHASE SOLAR PAGE 118 - 123

BOOSTER PAGE 124 - 131

BOOSTER SYMMETRIC PAGE 132 - 139

THREE-PHASE PFC PAGE 140 - 143

NPC PAGE 144 - 157

MNPC PAGE 158 - 167

HOUSINGS PAGE 168 - 181

HOUSING ITEMS
HOUSING DIMENSIONS

VINCOTECH WORLDWIDE

PAGE 182 - 183

GLOSSARY

PAGE 185

NAMING SYSTEM

PAGE 186

DESCRIPTION

Direct Pressed DCB

(Baseplate-less Modules)

Modules without baseplates are ready for assembly and can be pressed directly to the heat sink. A reliable and costeffective solution for applications where thermal capacity is not an issue. These modules are the perfect substitute for solid copper or aluminum silicon carbide baseplates.

Description:

- / Single DCB substrate
- / W/o baseplate
- Modules to be pressed directly to the application heat sink
- Variable pins Solder pins / Press-fit pins

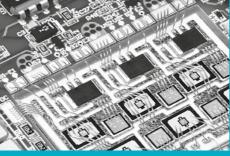
Thick Film Based IPM Platform

Thick film serves to produce highly integrated power modules in an additive process where various layers of conduction and insulation materials are printed on a ceramic sheet. The layers can form tracks, pads, or resistors. This technology offers good thermal conductivity, the option of creating layouts similar to a PCB, and freedom in designing housings and pins.

Thick film is a mature technology, having seen several years of use, particularly in critical automotive and other applications.

Description:

- Single substrate TF Al₂O₃
- Printed AqPd connection tracks
- Printed, laser-trimmed resistive tracks
- Bare die / SMD component mix
- Variable pins
- Solder pins / Press-fit pins

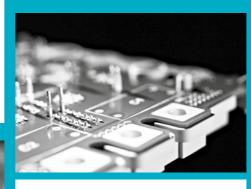

DCB Substrate on Cu-Baseplate

Power modules with baseplates are more robust, extend systems' life and enlarge the active area for heat to flow from the module to the heat sink.

A module with a baseplate can dissipate up to 48 % more power. This results in more available inverter power or in reduced junction temperatures. Modules also last longer with the benefit of baseplates' superior thermal dissipation.

Description:

- / Multiple DCB substrates on Cu baseplate Baseplate screwed to the heat sink
- Variable pins



DCB Substrate on Cu-Baseplate Based IPM Platform

IPM platforms with a baseplate can accommodate various topologies as well as a gate drive circuit, SMPS, voltage and current sensors, and many other components. A typical six-pack topology is the most frequently used option. The power semiconductors are bonded directly to a standard PCB that holds the discrete components.

Description:

- / Multiple substrates on Cu baseplate / Baseplate screwed to the heat sink
- / Variable interconnect technology
- / PCB-DBC wire interconnection

DCB Substrate on Cu-Baseplate with Screw

Vincotech high-power modules come in a low inductive package for high-power

applications. Optimized for three-level

topologies, these modules allow for

high switching frequencies and fully

Contacts

Description:

power leads

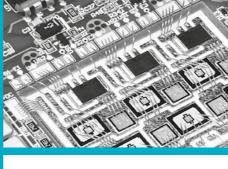
symmetrical layouts.

/ One or several Cu baseplates

/ Cu screw contact with nuts for

/ Baseplate(s) screwed to heat sink

/ Press-fit or solder pins for signal leads


Direct Pressed DCB (Baseplate-less Modules

with Spring Contact)

Direct Pressed in modules can be mounted in a single step to the heat sink and driver board. These modules are affixed with SPRiNG contacts and just a single screw to create electrical and thermal connections and make assembly an exercise in convenience. There is no need for time-consuming, costly mounting procedures, and even entire modules are easy to replace with SPRING contacts should the need arise.

Description:

/ Single DCB substrate

Solder pins / Press-fit pins

SUPERIOR SUBSTRATE MATERIAL

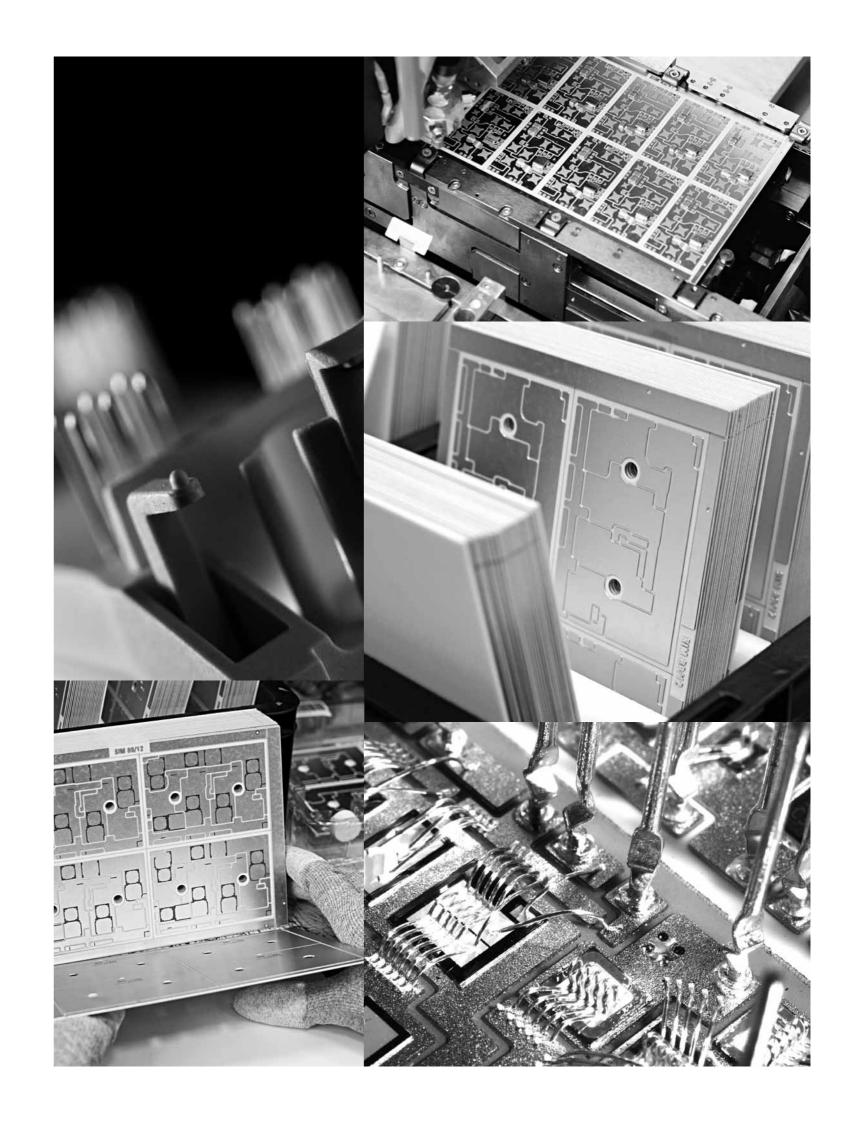
High-performance Si₃N₄

Remarkable mechanical strength, superior toughness, and high thermal conductivity make silicon nitride substrates the material of choice for power modules designed for ultra reliable products.

Si₃N₄ Ceramic

- / High thermal conductivity (four times that of Al_2O_3)
- / 50 % lower R_{th} for MiniSKiiP® (incl. thermal interface material)
- / Physically robust enough for high-performance thermal interface material [phase-change with 3.4 W/mK] to be used to expedite module assembly and handling
- / Lower thermal expansion rates for improved load power cycling capability

SUPERIOR SUBSTRATE MATERIAL

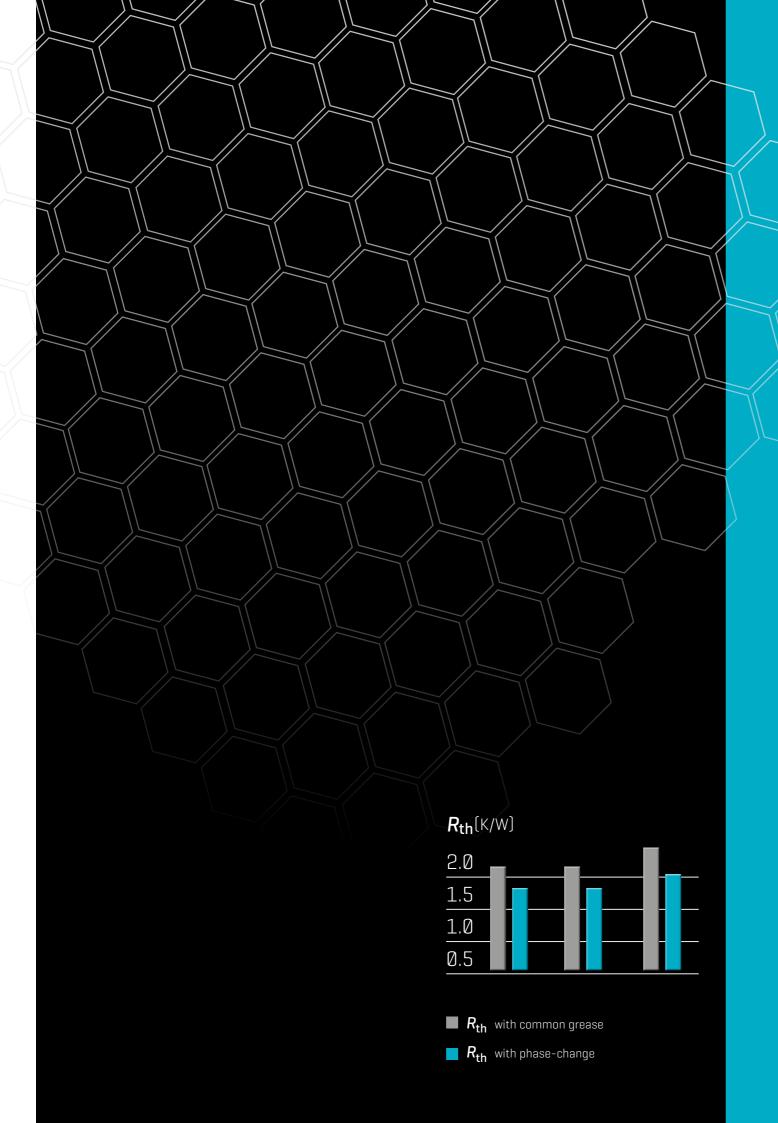

AlN - Aluminium Nitride

With the benefit of its high thermal conductivity, AlN can serve to increase power modules' current carrying capability while maintaining robust insulating capacity. Vincotech's advanced power module design accommodates AlN substrates without requiring architectural modifications. This design uses pressure-contact technology to establish a thermal connection between the module and heat sink.

The life span of a power module with an AlN substrate is more than twice that of an Al $_2$ O $_3$ version.

Key Attributes of Aluminium Nitride

- / Beneficial dielectric properties
- / High thermal conductivity
- / Low thermal expansion coefficient, close to that of Silicon
- / Non-reactive to normal semiconductor process chemicals and gases


Sintered Ag (Die Attach Technology)

High-end power modules must meet challenging demands for thermal and electrical performance and reliability. Vincotech has taken sintering to the next level to meet these demands and is able replace all soldered points with sintered connections.

Sintering - the Multiple Solution

- / All Vincotech suppliers' chips may be sintered
- / Chip substrate and baseplate sintered in one step
- / Multi-component capability chip, NTC and shunt may be sintered together
- / Multi-level capability up to 3 mm difference in height can be accommodated
- / Lower thermal expansion rates for improved load cycling capability

INTERCONNECTION TECHNOLOGIES

Phase-change Material. Pre-applied Thermal Interface Material.

The benefits of using phase-change material $\mbox{Features}$: to enable thermal conductivity between the module and heat sink are considerable.

The phase-change material is solid at room temperature. This makes it smearresistant during transportation and module assembly. Our in-house screen-printing process ensures the material's thickness configured and optimized for maximum heat transfer capability.

Benefits:

- / Up to 20 % R_{th} reduction from T_i to heat sink for Al₂O₃-based modules
- / Four times higher thermal conductivity and significantly lower thermal resistance than standard grease
- / 30 % Rth reduction from Ti to heat sink for AlN-based high performance modules
- / Solid, non-sticky surface minimizes contamination risk, prevents layer damage

- / Fast, easy assembly of modules
- / Thermal conducting material with optimized thickness
- / Better R_{th} and reduced risk of DCB cracking
- / Easier production process; no need for screen printing facilities
- / Automated screen printing for utmost precision and reliability
- / No risk of smearing thermal paste; material is solid at room temperature
- / Standard solder profile applicable [e.g. J-STD-001, J-STD-003]
- / Non-stick surface, resistant to dirt, dust and other contaminants

Properties:

Parameter	Value	Uni
Thermal conductivity	3.4	W/mł
Phase change temperature	+45	٥٥

ORDER CODES

Example order code for phase-change material:

Version 1: V23990-P840-A48-/3/-PM

Version 2: 10-FZ06BIA045FH01-P897E10-/3/

Please ask your regional contact about the availability of phase-change material. Option code for the phase-change material for modules is -/3/.

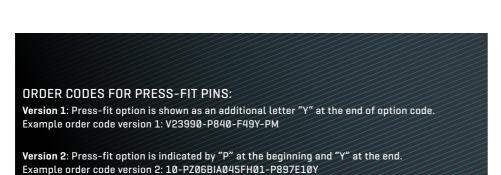
INTERCONNECTION TECHNOLOGIES Press-fit Technology. Press to Save Time.

Vincotech's Press-fit technology reduces PCB assembly time and effort considerably.

Well established in the automotive industry, the Press-fit pin eliminates the need for soldering. This cuts process time and costs, and boosts production output capacity.

With no need to solder modules, engineers / Eliminates costly additional soldering enjoy great flexibility in design. The module / Pins are in the same position as solder pins can easily be mounted on top or bottom of / High current carrying capability the PCB at no extra cost and effort.

Features:


- / Approved rounded Press-fit area / Complies with DIN and IEC standards
- / Tapered pin head
- / Available for almost all housings

Benefits:

- [30 A @ 80 °C]
- / Flexible mounting onto the power module DCB
- / Cuts production costs
- / Reliable cold-welding connection to PCB / No PCB hole damage to enable reuse
- / Thermo-mechanical push-and-pull-

ADVANCED TECHNOLOGIES HOUSINGS ADVANCED TECHNOLOGIES HOUSINGS

EXCEPTIONAL HOUSINGS

flow90 Housing. Twist 90° to Save Space.

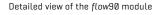
Vincotech flow90 power modules are the perfect match for book-sized inverters and 19-inch rack-mounted power supplies with a 90-degree angle between the heat sink and PCB.

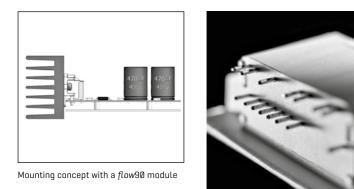
Featuring pins arrayed at a 90-degree angle, flow90 0 and flow90 1 modules are available as standard products with CON, PIM, and PACK configurations.

This package is also a good choice for custom topologies for switched-mode power supplies, battery chargers and the like. There is no need for a flexible PCB, and flow90 modules make the most of the PCB to minimize the application footprint. Features:

material are available on demand.

from 90-degree mounting.


spare customer the precise application


effort. With all these purpose-driven

features, the flow90 is the module of

choice for many applications that benefit

/ Complies with DIN and IEC standards / Topologies are easily customized / Pre-applied phase-change material available on demand

Benefits:

/ Space-saving housing enabling a 90degree angle between the heat sink and

/ Accommodates standard heat sinks, so no costly L-shaped versions needed / Easy clip-in mounting into the PCB

- Modules with pre-applied phase-change / Enables installation on the same side of the PCB as other through-hole components
- Vincotech can handle this critical task to / Can be wave-soldered along with the other components in one pass
 - / Perfect match for book-sized inverters and 19-inch rack-mounted power supplies

EXCEPTIONAL HOUSINGS

flow OB Housing. The Compact Cost-cutter.

This ultra compact housing for small power applications is an excellent choice $\,$ / Thin 0.38 mm Al $_2$ O $_3$ ceramic for improved for cost-effective, space-saving designs.

A condensed version of the flow 0 housing, the flow OB housing is sized for smaller power applications, providing a compact alternative to meet the demands of smaller / Size: 36 mm x 34 mm power embedded drives and frequency / 17 mm height inverters.

The first of the two debut topologies in the flow OB housing consists of a PIM + PFC and is called flowPIM® 0B + PFC

Equipped with a single-phase input rectifier, a PFC booster and a three-phase inverter, it uses high-speed 650 V IGBTs for the PFC. A DC capacitor and an NTC are integrated. The flowPIM® 0B + PFC module rated for the highest current features a PFC circuit based on a nominal chip current of 15 A and an inverter section equipped with 10 A components.

The other topology is called flowPACK 0B. This standard inverter topology with 6 IGBTs and freewheeling diodes is available with 1200 V and 600 V ratings.

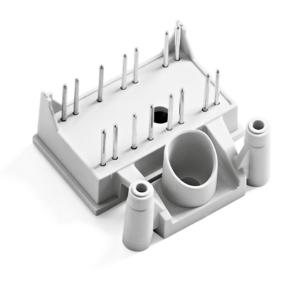
The 600 V variant covers currents ranging from 6 A to 30 A; the 1200 V variant comes with currents ratings between 4 A and 15 A.

/ Single-screw heat sink mounting

/ Built-in standoffs with optional

PCB screw mounting

/ For very compact designs


/ 17 mm in height for greater creepage distance

thermal performance

/ Solder or Press-fit pins

/ Optionally with pre-applied, highly conductive TIM with 3.4 W/mK

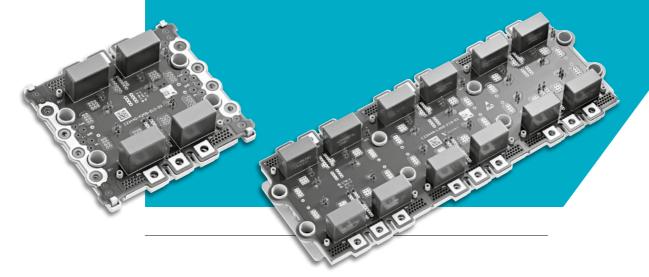
/ Phase-change material

EXCEPTIONAL HOUSINGS

VINco X. The Low-inductive High-power Package.

The low-inductive design of the VINco X package featuring onboard DC capacitors extends maximum switching frequencies up to 20 kHz, which is unique in this power range.

A MODULAR PACKAGE

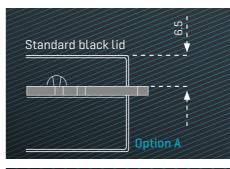

- / Low-inductive PCB
- / Optional onboard snubber capacitors
- / High-current screw terminals
- / Independent baseplates for better thermal performance

Benefits:

- / Optimized for three-level topologies
- / Enables high switching frequencies
- / Fully symmetrical layouts
- / Modular construction
- / Low-inductive path for easy paralleling
- / Optional snubber capacitors
- / Multiple chipset combinations
- / Available with phase-change material

Features:

- / MNPC up to 1800 A
- / NPC Up to 1200 A
- / Stray Inductance: 5 15 nH* NPC low-inductive path / 3 10 nH* MNPC
- / Easy paralleling: <5 nH module to module
- * Depending on model



EXCEPTIONAL HOUSINGS

MiniSKiiP® - Spring Contacts Connection.

For 10+ years Vincotech offers MiniSKiiP® modules with solderless spring contact mounting technology and pre-applied thermal paste. These second-source modules are affixed with SPRiNG contacts and just a single screw to create electrical and thermal connections and make assembly an exercise in convenience. There is no need for time-consuming, costly mounting procedures, and even entire modules are easy to replace with SPRiNG contacts should the need arise.

Lids:

Two lids are available for all MiniSKiiP® modules:

/ Standard black 6.5 mm version allowing SMD parts to be mounted below the lid / Thin white 2.8 mm version sized for highly the availability of MiniSKiiP® options. compact mechanical designs

Thermal interface material features:

- / Fast and easy module and PCB assembly
- / Thermal conducting material with optimized thickness
- / Optimized thermal resistance
- / Easy production process; no need for screen printing facilities
- / Automated screen printing for utmost precision and reliability
- / TIM available containing silicone or silicon-free

Properties:

Material	Wacker® Paste P12
Thermal conductivity	0.81 W/mK

Order codes:

lids and applied grease: Version 1: V23990-K220-A40-/1A/-PM


Example order code for different

Version 2:

80-M206BIA045FH-K999E10-/1A/

Please ask your regional contact about

Lid	Order Code
Standard (6.5 mm)	-/0A/
Thin [2.8 mm]	-/0B/
Standard [6.5 mm]	-/1A/
Thin [2.8 mm]	-/1B/
Standard [6.5 mm]	-14AI
Thin [2.8 mm]	-/4B/
	Standard [6.5 mm] Thin [2.8 mm] Standard [6.5 mm] Thin [2.8 mm] Standard [6.5 mm]

INTEGRATED SIMULATION ENVIRONMENT TOOL VincotechISE is an integrated simulation and selection environment for power modules.

It contains updated versions of the legacy tools flowSIM, flowSOL and flowSEL. Two other tools, flowMIS and the new thermal simulator flowTHERM, are available; calculations can be provided on special request.

All power loss and temperature calculations are based on real measurements taken of each module.

01 flowSOL

is a simulation tool for solar power modules simulates power modules power and tailored to this purpose and covers single- data is available on request only. phase and three-phase power modules for transformer-less and transformer-based 05 flowTHERM topologies.

02 flowSIM

much like that of the flowSOL tool, but is This data is available on request only. geared towards industrial drives. This revamped user interface affords you in-depth insight into how parameter adjustments affect losses, temperatures and efficiency.

03 flowSEL

is a power module selector designed to Download Vincotech ISE into your simulation help you find the solution best suited to directory. your industrial drive application. Entering all the key application parameters is an Step 03: exercise in convenience with its interactive Start Vincotech ISE. schematic.

04 flowMIS

and similar applications. It features a temperature characteristics based on an parameter setup and function blocks adjustable mission profile. Calculation

gives you, as its name suggests, an inside look into the module to analyze thermal behavior. A thermal image of the power calculates Vincotech power modules for module's DCB provides detailed information industrial drive applications. Its GUI looks on temperatures and thermal distribution.

Software Download

Step 01:

Download and install LabVIEW Runtime Engine once (if not already installed).

application-specific solutions

Vincotech delivers application-specific solutions with utmost creative choice when it comes to design.

Vincotech delivers solutions tailored to your applications.

Completely independent of component suppliers, we cherry-pick what's best for you from more than ten different leading semiconductor suppliers to build modules that benefit your business. Experience the peace of mind that comes with knowing your needs are being met.

Customers enjoy great freedom of choice.

They are not locked in into one system or tied to standard products or specific suppliers. Free to configure their products as they see fit, they can find the best solution with a lot less effort.

Vincotech delivers to customer's specifications – that is, more efficient products with better thermal connections, optimized to improve their applications.

In our book, 'optimized' means more cost-effective, smaller, longer-lasting and easier-mounting modules that speed up production.

That's why Vincotech attaches such great value to its simulation and testing tools. The tools interactively calculate modules' electrical and thermal behavior based on fully measured parameters.

If you want your power module to be application-specific, it has to be Vincotech.

APPLICATION-SPECIFIC SOLUTION

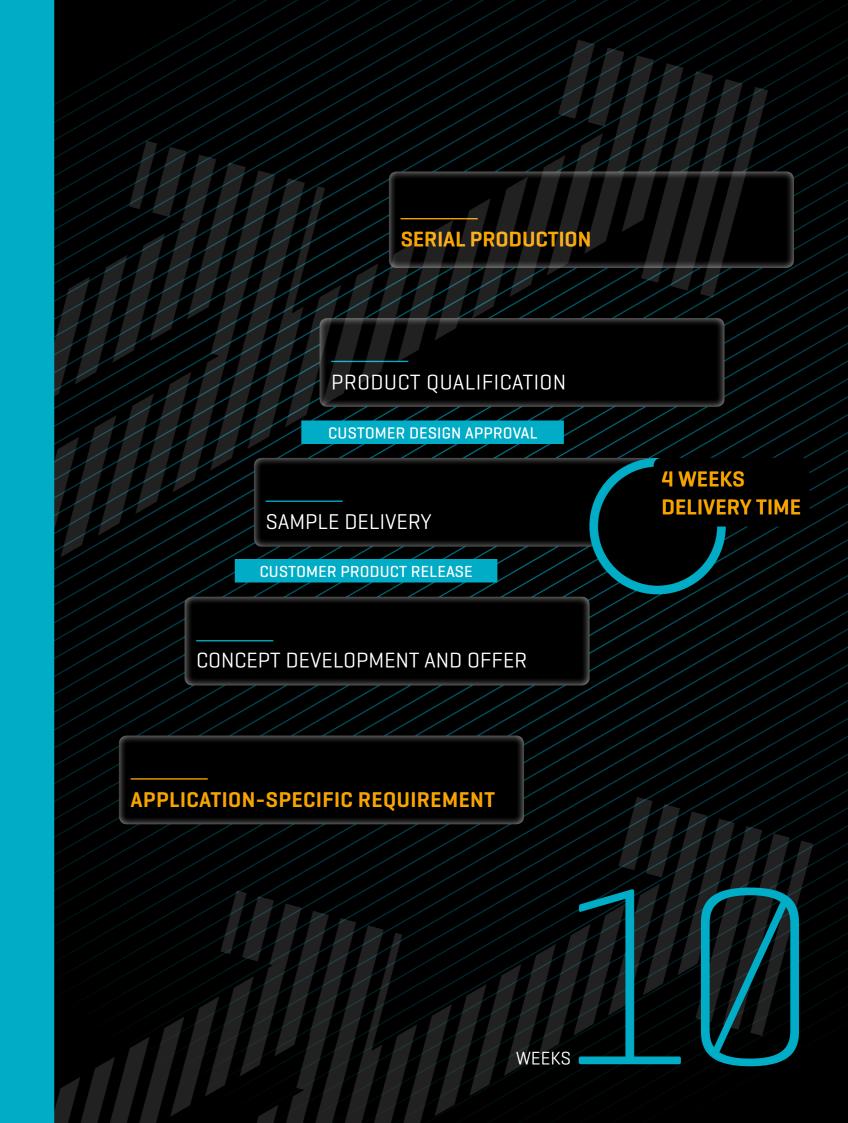
Vincotech is Fast and Responsive. And that Agility Speed Benefits You.

Vincotech provides a wide selection of standard housings to keep your design options wide open. We're there for you at every step of your journey. When you opt for Vincotech, you will experience true face-to-face support from a most responsive supplier.

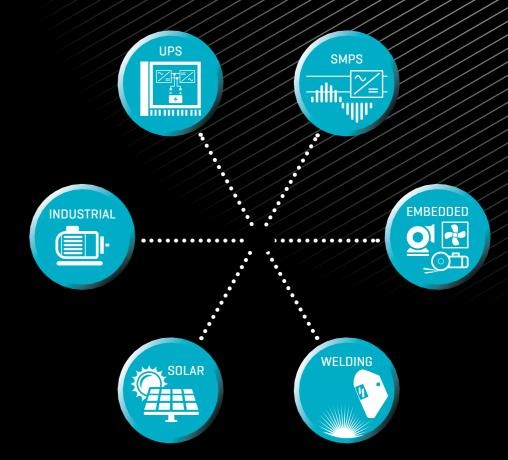
Our sample lead times are remarkably short at just **four weeks** on average. Modules get approved that much faster, so customers' production runs commence sooner and their products are marketed much earlier. To this end, we make ordering easy, eliminate processes that do not add value, and keep the production line flexible. Vincotech is agile enough to handle fluctuating demand even at short notice and deliver the goods just in time.

Speed and Flexibility - that sums up what Vincotech is all about.

Vincotech's customer focus, paired with efficient development and production flows, saves you time.


Fast time to market:

- / The speed at which we can deliver the initial technical and commercial proposal [including a chip list, electrical configuration, mechanical details, pin-out and pin-positioning, options, etc] sets standards for the industry to follow.
- / Advanced simulation tools speed up component selection and mapping.
- / Sample lead time is phenomenally short (four weeks on average).
- / Module approval comes much faster with pre-qualified components and technologies.


Cost efficiency:

- / Vincotech is fully independent of chip suppliers choose your preferred chip from more than ten different leading semiconductor manufacturers (including SiC technology).
- / Enjoy the mechanical flexibility that comes with a broad variety of standard housings and free pin positioning.
- / Benefit from different interconnects (solder, Press-fit, screw and spring terminals) and stress-relief zones wherever they are needed.
- / Take advantage of readily customized standard products. Customers are free to cherry-pick from the largest selection of semiconductors and a wealth of pre-qualified topologies.

Flexibility, fast time to market, cost-effectiveness beyond our products, an innovative spirit, and a service-minded outlook – that's what we're all about.

Vincotech offers more than **40 standard families of power modules** serving a wide and **diverse range of applications**.

MARKETS & APPLICATIONS

MARKETS & APPLICATIONS

INDUSTRIAL DRIVES

Vincotech offers power integrated modules (PIM/CIB – converter, inverter and brake), sixpacks (three-phase modules), half-bridges and rectifier modules engineered to support standard drive applications for industrial use and motor power ranges from 1 kW to 60 kW.

For example: flowPIM® 0 | flowPACK 1 | flowPIM® 2

EMBEDDED DRIVES

Drives in circulation pumps, fans, air-conditioners, and other devices connected to the public power grid usually require active power factor correction (PFC). These PIM and IPM modules feature optional integrated PFC.

For example: flowPIM® 0 + PFC | flowIPM 1B

POWER SUPPLIES

Switched-mode power supplies are used in industrial applications with power electronics and in battery chargers. Our modules are equipped with PFC circuits (AC/DC), half- and H-bridges, and step-up and step-down converters (DC/DC) for these applications.

For example: flowPFC 0 | fastPACK 0 H

The photovoltaic market requires DC/DC converter circuits that adjust the solar input voltage to the maximum power point [MPP] and DC/AC converters to deliver solar energy to the public power grid or to load an energy storage. Vincotech's innovative modules supportup to 250 kW.

For example: flowSOL 0 | flowSOL 1 | flow3xPHASE 0 SiC flow3xB0OST 0 SiC for < 100 kW: flowMPC 0 flowMNPC 1 and flowMNPC 2 for > 100 kW: VINcoMNPC X4

UNINTERRUPTABLE POWER SUPPLIES (UPS)

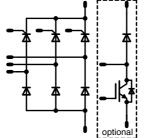
Power components for UPS applications. Modules for AC/DC and DC/AC power conversion. Topologies such as single- and three-phase rectifiers, half- and H-bridges, boosters, and NPC/MNPC/AMNPC. Power ranges up to 200 kW.

For example: for < 100 kW: flowMNPC 0 | flowMNPC 1 and flowMNPC 2 for > 100 kW: VINcoMNPC X

WELDING

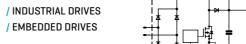
Inverter welding units need modules that can handle high switching frequencies in resonant mode or in zero voltage switching (ZVS) mode, and are equipped with H- and half-bridge topologies. Our modules also come with PFC to draw maximum power from the single-phase grid.

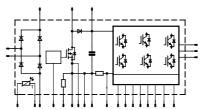
For example: flowPFC 0 | fastPACK 0 H


32 / 33

RECTIFIER/BRC

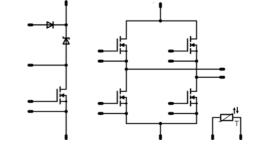
APPLICATIONS


/ UPS / WELDING


/ INDUSTRIAL DRIVES / POWER SUPPLY

IPM CIP

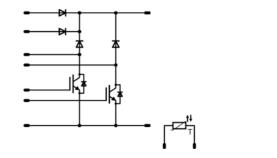
APPLICATIONS



ONE-PHASE SOLAR

APPLICATIONS

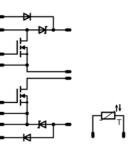
/ POWER SUPPLY / SOLAR INVERTERS



BOOSTER

APPLICATIONS

/ POWER SUPPLY / SOLAR INVERTERS / UPS

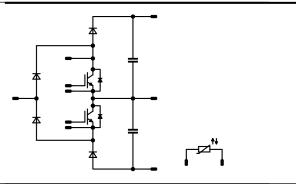


BOOSTER SYMMETRIC

APPLICATIONS

/ POWER SUPPLY / SOLAR INVERTERS

/ UPS

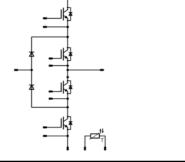


THREE-PHASE PFC

APPLICATIONS

/ POWER SUPPLY

/ UPS

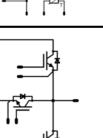


NPC

APPLICATIONS

/ POWER SUPPLY / SOLAR INVERTERS

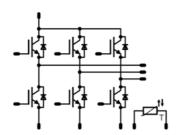
/ UPS



MNPC

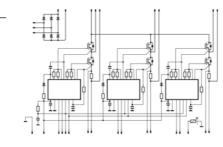
APPLICATIONS

/ POWER SUPPLY

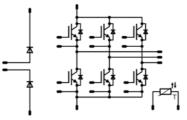

/ SOLAR INVERTERS / UPS

SIXPACK

APPLICATIONS


/ INDUSTRIAL DRIVES / EMBEDDED DRIVES / UPS

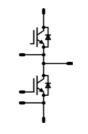
IPM CI


APPLICATIONS

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

SIXPACK + RECTIFIER

APPLICATIONS / INDUSTRIAL DRIVES

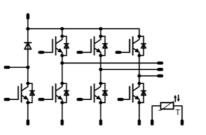


HALF-BRIDGE

APPLICATIONS / INDUSTRIAL DRIVES

/ POWER SUPPLY / SOLAR INVERTERS

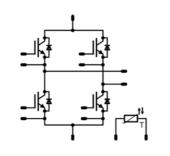
/ UPS / WELDING

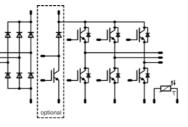


SEVENPACK

APPLICATIONS / INDUSTRIAL DRIVES

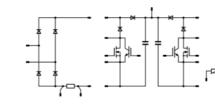
PIM (CIB)

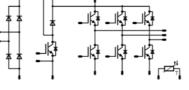

OVERVIEW / APPLICATIONS / HOUSINGS


FULL-BRIDGE

APPLICATIONS / POWER SUPPLY

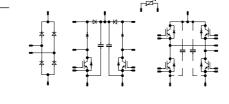
/ SOLAR INVERTERS / UPS / WELDING


APPLICATIONS / INDUSTRIAL DRIVES / EMBEDDED DRIVES

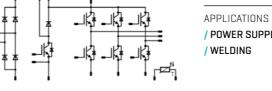

PFC

APPLICATIONS

/ EMBEDDED DRIVES / POWER SUPPLY / WELDING



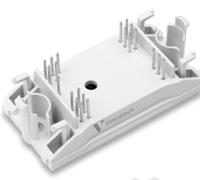
APPLICATIONS / EMBEDDED DRIVES



RPI

/ POWER SUPPLY

PIM WITH PFC


	flow 0B	flow 0	flow 1 flow 1B	flow 2		flow90 0 flow90 1	VINco X4 VINco X8 / VINco X12	MiniSKiiP® Ø / MiniSKiiP® 1 MiniSKiiP® 2 / MiniSKiiP® 3
RECTIFIER / BRC	flowCON 0B (P. 40 41)	flowCON 0 (P. 38 39)		flowCON 2 (P. 42 43)	-	flow90CON 1 (P. 40 41)		
SIXPACK	flowPACK 0B (P. 48 49)	flowPACK 0 (P. 46 47)	flowPACK 1 (P. 50 51)	flowPACK 2 (P. 50 51)	-	flow90PACK 0 [P. 46 47] flow90PACK 1 [P. 48 49]		MiniSKiiP® PACK 1 (P. 52 53) MiniSKiiP® PACK 2 (P. 52 53) MiniSKiiP® PACK 3 (P. 54 55)
SIXPACK + RECTIFIER			flowPACK 1+R [P. 58 59]	flowPACK 2+R [P. 58 59]				
SEVENPACK		flow7PACK 0 [P. 62 63]	flow7PACK 1 [P. 62 63]	flow7PACK 2 [P. 64 65]				
PIM		flowPIM® 0 [P. 68 69]	flowPIM® 1 [P. 68 69]	flowPIM® 2 [P. 70 71]	_	flow90PIM® 1 [P. 70 71]		MiniSKiiP® PIM Ø (P. 72 73) MiniSKiiP® PIM 1 (P. 72 73) MiniSKiiP® PIM 2 (P. 74 75) MiniSKiiP® PIM 3 (P. 74 75)
PIM WITH PFC	flowPIM® 0B+PFC [P. 78 79]	flowPIM® 0 + PFC (P. 78 79)				flow90PIM 1 + PFC (P. 80 81)		
IPM CIP			flowIPM 1B [CIP] [P. 84 85]					
IPM CI			flowIPM 1B [CI] [P. 88 89]					
HALF BRIDGE		flowPHASE 0 [P. 92 93] flowPHASE 0+NTC			_			
FULL BRIDGE		fastPACK 0 H [P. 100 101] fastPACK 0 HC [P. 100 101] flowPACK 0 MOS [P. 104 105] fastPACK 0 SIC [P. 106 107] flowPACK 0 SIC [P. 106 107]	flowPACK 1 H [P. 102 103] fostPACK 1 H [P. 102 103] fostPACK 1 H [P. 104 105] flowPACK 1 SiC [P. 108 109]	_				
PFC		flowPFC 0 [P. 112 113] flowPFC 0 CD						
RPI			flowRPI1 [P. 116 117]		_			
ONE-PHASE SOLAR		flowSOL 0 BI (TL) [P. 120 121) flowSOL 0 BI (T) primary	flowSOL 1 BI (TL) (P. 122 123) flowSOL 1 BI (T) primary					
BOOSTER		flowBOOST 0 [P. 126 127] flow2xBOOST 0 [P. 126 127] flow3xBOOST 0 [P. 128 129] flow3xBOOST 0 SiC [P. 128 129] flowBOOST 0 SiC [P. 130 131]			_			
BOOSTER SYMMETRIC		flowBOOST 0 symmetric (P. 134 135) flowBOOST 0	flowB00ST 1 symmetric [P. 136 137]	flowBOOST 2 symmetric [P. 136 137]			VINcoBOOST X4 symmetric [P. 138 139]	
THREE-PHASE PFC		flowSPFC 0 [P. 142 143]						
NPC		flowNPC 0 IGBT [P. 146 147] flowNPC 0 MOS [P. 146 147] flowNPC 0 parallel [P. 148 149]	flowNPC 1 [P. 148 149] flow3xNPC 1 [P. 150 151] flowNPC 1 split [P. 150 151] flowNPC 1 MOS [P. 152 153]	flowNPC 2 [P. 152 153]	_		VINCONPC X4 [P. 154 155] VINCONPC X8 [P. 154 155] VINCONPC X12 [P. 156 157]	
MNPC		flowMNPC 0 (P. 160 161) flowMNPC 0 SiC	flowMNPC 1 (P. 162 163) flow9xMNPC 1	flowMNPC 2 (P. 164 165)	-		VINCOMNPC X4 [P. 166 167] VINCOMNPC X12	

RECTIFIER

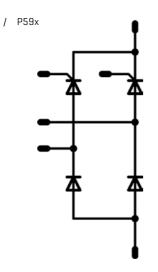
Part-No	V oltage (V)	Current (A)	Technology	Comments
V23990-P649-G10-PM	1600	34	Thyristor	
V23990-P649-H10-PM	1600	34	Thyristor	w/o brake
V23990-P640-H10-PM	1600	42	Thyristor	w/o brake
V23990-P640-G10-PM	1600	42	Thyristor	
V23990-P649-H-PM	1600	50	Rectifier	w/o brake
V23990-P649-G-PM	1600	50	Rectifier	
V23990-P640-G20-PM	1600	75	Rectifier	2-clip
V23990-P640-H-PM	1600	75	Rectifier	w/o brake
V23990-P640-G-PM	1600	75	Rectifier	
V23990-P590-J19-PM	1600	75	Thyristor	complementary to P600-119
V23990-P600-I19-PM	1600	75	Thyristor	complementary to P590-119
V23990-P590-J09-PM	1600	105	Rectifier	complementary to P600-109
V23990-P600-I09-PM	1600	105	Rectifier	complementary to P590-I09

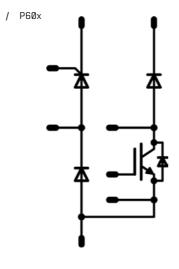
flowCON 0

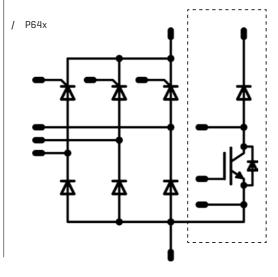
Facts

- / Input rectifier with diodes or optionally half controlled
- / Optionally w/o brake and reduced rectifier
- / Complementary to flowPHASE 0, flowPACK 0/1/2, fastPHASE 0
- / Clip-in PCB mounting possible

Housing


- / flow 0 17 mm
- / flow 0 17 mm 4-clip


www.vincotech.com/flowCON-0


Applications

/ INDUSTRIAL DRIVES / POWER SUPPLY / UPS / WELDING

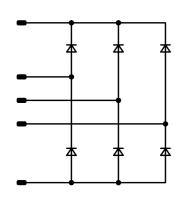
RECTIFIER

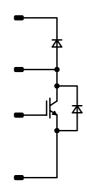
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-0B166BA028SC-M989G09	1600	35	Rectifier	

flowCON 0B

Facts

- / Modular input rectifier with brake
- / Complementary to flowPACK 0B
- / New ultra-compact housing with single-screw heat sink mounting


Housing


/ flow 0B 17 mm

www.vincotech.com/flowCON-0B

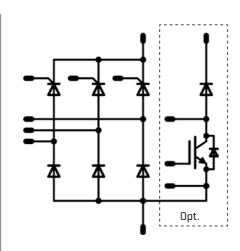
Applications

/ INDUSTRIAL DRIVES / POWER SUPPLY / UPS / WELDING

flow90CON 1

Facts

- / Input rectifier optionally half controlled with or without brake
- / Compatible with flow90 PACK 1
- / Clip-in PCB mounting
- / Clip or screw-on heat sink mounting


Housing

/ flow 90 1

www.vincotech.com/flow90CON-1

Applications

/ INDUSTRIAL DRIVES / POWER SUPPLY / UPS / WELDING

Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P717-G10-PM	1600	36	Thyristor	
V23990-P717-H10-PM	1600	36	Thyristor	w/o brake
V23990-P717-G-PM	1600	39	Rectifier	
V23990-P717-H-PM	1600	39	Rectifier	w/o brake
V23990-P718-G10-PM	1600	43	Thyristor	
V23990-P718-H10-PM	1600	43	Thyristor	w/o brake
V23990-P718-G-PM	1600	52	Rectifier	
V23990-P718-H-PM	1600	52	Rectifier	w/o brake
V23990-P719-G-PM	1600	75	Rectifier	
V23990-P719-H-PM	1600	75	Rectifier	w/o brake

 \emptyset 41

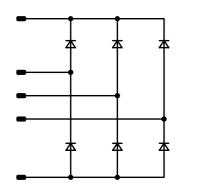
RECTIFIER

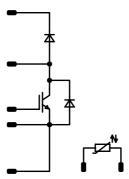
Part-No	Voltage (V)	Current (A)	Technology	Comments
30-F2166BA150RW-L267G09	1600	150	Rectifier	
30-F2166BA150RW01-L267G19	1600	150	Rectifier	enhanced brake chopper

flowCON 2

Facts

- / Input rectifier with brake
- / For high power drive applications
- / With flowPACK 2 up to 30 kW inverters
- / Temperature sensor


Housing


/ flow 2 17 mm

www.vincotech.com/flowCON-2

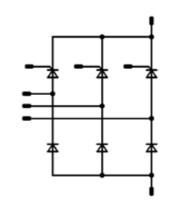
Applications

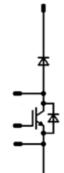
/ INDUSTRIAL DRIVES / POWER SUPPLY / UPS / WELDING

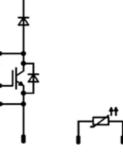
MiniSKiiP® CON 2

Facts:

- / Three-phase half controlled rectifier
- / Brake chopper
- / Temperature sensor


Housing:


/ MiniSKiiP® 2


www.vincotech.com/MiniSKiiPCON-2

Applications


/ INDUSTRIAL DRIVES / POWER SUPPLY / UPS / WELDING

Part-No	Voltage (V)	Current [A]	Technology	Comments
80-M0166BA060RW02-K369G	1600	60	Thyristor	

Part-No Voltage (V) Current [A] Technology Comments 10-R0126PA008SC-M627F40 1200 IGBT4 10-RZ126PA008SC-M627F41 1200 IGBT4 10-R0126PA015SC-M628F40 IGBT4 1200 15 10-RZ126PA015SC-M628F41 1200 15 IGBT4 10-R0126PA025SC-M629F40 1200 25 IGBT4 10-RZ126PA025SC-M629F41 1200 25 IGBT4 10-R0126PA035SC-M620F40 1200 35 IGBT4 10-RZ126PA035SC-M620F41 1200 35 IGBT4

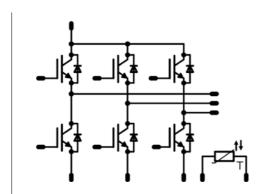
SIXPACK

flow90PACK 0

Facts

- / IGBT4 (1200 V) technology for low saturation losses and improved EMC behavior
- / Supports designs with 90° mounting angle
- / Clip-in PCB mounting
- Clip or screw-on heat sink mounting

Available options:


F40: housing with clips F41: housing w/o clips

Housing

/ flow900 www.vincotech.com/flow90PACK-0

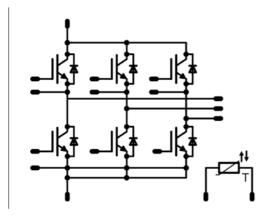
Applications

/ INDUSTRIAL DRIVES

flowPACK 0

Facts

- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low saturation losses
- / Compact and low inductance design
- / Open emitter configuration available upon request


Housing

- / flow 0 12 mm (F48)
- / flow 0 17 mm (F49)

www.vincotech.com/flowPACK-0

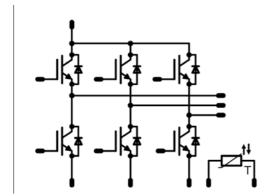
Applications

/ INDUSTRIAL DRIVES

Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P864-F48-PM	600	30	IGBT3	
V23990-P864-F49-PM	600	30	IGBT3	
V23990-P865-F48-PM	600	50	IGBT3	
V23990-P865-F49-PM	600	50	IGBT3	
V23990-P866-F48-PM	600	75	IGBT3	
V23990-P866-F49-PM	600	75	IGBT3	
V23990-P868-F48-PM	1200	15	IGBT4	
V23990-P868-F49-PM	1200	15	IGBT4	
V23990-P869-F48-PM	1200	25	IGBT4	
V23990-P869-F49-PM	1200	25	IGBT4	
V23990-P860-F48-PM	1200	35	IGBT4	
V23990-P860-F49-PM	1200	35	IGBT4	

flowPACK 0B

Facts


- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low saturation losses
- / Open emitter topology
- / New ultra-compact housing with single-screw heat sink mounting

Housing

/ flow 0B 17 mm www.vincotech.com/flowPACK-0B

Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

10-0B066PA006SB-M992F09	COO	C	IGBT3	
T0-080005A0002R-W335L03	600	6		
10-0B066PA010SB-M993F09	600	10	IGBT3	
10-0B066PA015SB-M994F09	600	15	IGBT3	
10-0B066PA020SB-M995F09	600	20	IGBT3	
10-0B066PA030SB-M996F09	600	30	IGBT3	
10-0B126PA004SC-M997F09	1200	4	IGBT4	
10-0B126PA008SC-M998F09	1200	8	IGBT4	
10-0B126PA015SC-M999F09	1200	15	IGBT4	

Technology

Comments

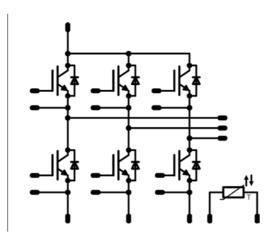
Current [A]

Voltage (V)

flow90PACK 1

Facts

- IGBT3 (600 V) and IGBT4 (1200 V) technology for low saturation losses
- Open emitter topology
- Supports designs with 90° mounting angle
- / Clip-in PCB mounting
- Clip or screw-on heat sink mounting


Housing

/ flow901

www.vincotech.com/flow90PACK-1

Applications

/ INDUSTRIAL DRIVES

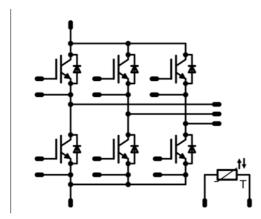
Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-P704-F-PM	600	30	IGBT3	
V23990-P705-F-PM	600	50	IGBT3	
V23990-P706-F-PM	600	75	IGBT3	
V23990-P707-F40-PM	1200	8	IGBT4	
V23990-P708-F40-PM	1200	15	IGBT4	
V23990-P709-F40-PM	1200	25	IGBT4	
V23990-P700-F40-PM	1200	35	IGBT4	
V23990-P700-F44-PM	1200	50	IGBT4	

48

Part-No

flowPACK 1

Facts


- / IGBT3 (600 V) or IGBT4 (1200 V) technology for low conduction losses and improved EMC
- / Optionally with AIN DCB for improved R_{th}
- / Compact design

Housing

- / flow 1 12 mm (F08, F108)
- / flow 1 17 mm (F10, F)
- www.vincotech.com/flowPACK-1

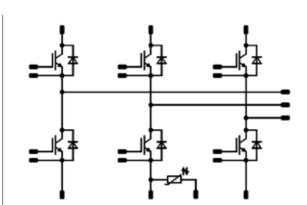
Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

flowPACK 2

Facts

- / Latest chip technology for low conduction losses and improved EMC behavior
- Available with 1200 V IGBT4 and 1200 V Mitsubishi generation 6.1
- Compact and low inductive design
- Built-in NTC


Housing

/ flow 2 17 mm

www.vincotech.com/flowPACK-2

Applications

/ INDUSTRIAL DRIVES

Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P823-F10-PM	600	50	IGBT3	
V23990-P823-F-PM	600	50	IGBT3	improved Rth (AlN)
V23990-P824-F10-PM	600	75	IGBT3	
V23990-P824-F-PM	600	75	IGBT3	improved Rth (AlN)
V23990-P825-F10-PM	600	100	IGBT3	
V23990-P825-F-PM	600	100	IGBT3	improved Rth (ALN)
V23990-P828-F10-PM	1200	35	IGBT4	
V23990-P828-F-PM	1200	35	IGBT4	improved Rth (ALN)
V23990-P829-F10-PM	1200	50	IGBT4	
V23990-P829-F-PM	1200	50	IGBT4	improved Rth (ALN)
V23990-P829-F108-PM	1200	50	IGBT4	
V23990-P829-F08-PM	1200	50	IGBT4	improved Rth (ALN)
V23990-P820-F10-PM	1200	75	IGBT4	
V23990-P820-F-PM	1200	75	IGBT4	improved Rth (AlN)

Part-No	Voltage (V)	Current [A]	Technology	Comments
30-P2126PA050NB-L287F69Y	1200	50	M6.1	
30-P2126PA050SC-L287F09Y	1200	50	IGBT4	
30-P2126PA075NB-L288F69Y	1200	75	M6.1	
30-P2126PA075SC-L288F09Y	1200	75	IGBT4	
30-P2126PA100NB-L289F69Y	1200	100	M6.1	
30-P2126PA100SC-L289F09Y	1200	100	IGBT4	
30-P2126PA150NB-L280F69Y	1200	150	M6.1	
30-P2126PA150SC-L280F09Y	1200	150	IGBT4	

Technology Voltage (V) Current [A] Comments

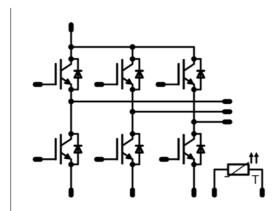
Part-No V23990-K218-F-PM equivalent: SKiiP 11AC126V1 1200 IGBT3 1200 equivalent: SKiiP 11AC12T4V1 IGBT4 1200 IGBT3 equivalent: SKiiP 12AC126V1 15

V23990-K218-F40-PM V23990-K219-F-PM V23990-K219-F40-PM 1200 15 IGBT4 equivalent: SKiiP 12AC12T4V1 V23990-K210-F-PM equivalent: SKiiP 13AC126V1 1200 25 IGBT3 V23990-K210-F40-PM 1200 25 IGBT4 equivalent: SKiiP 13AC12T4V1

MiniSKiiP® PACK 1

Facts

- / IGBT technology for low conduction and switching losses
- / Available with IGBT3 and IGBT4
- / Solderless spring contact mounting system


Housing

/ MiniSKiiP® 1

www.vincotech.com/MiniSKiiP-PACK-1

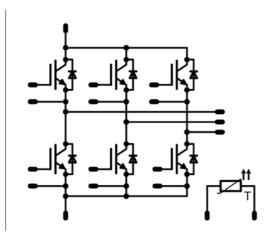
Applications

/ INDUSTRIAL DRIVES

MiniSKiiP® PACK 2

Facts

- / IGBT technology for low conduction and switching losses
- / Available with IGBT3 and IGBT4
- Solderless spring contact mounting system
- Open emitter configuration available upon


Housing

/ MiniSKiiP® 2

www.vincotech.com/MiniSKiiP-PACK-2

Applications

/ INDUSTRIAL DRIVES

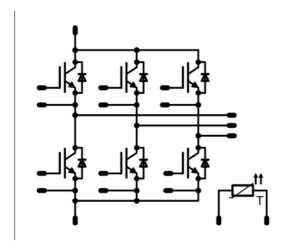
Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-K232-F-PM	600	50	IGBT3	equivalent: SKiiP 26AC066V1
V23990-K233-F-PM	600	75	IGBT3	equivalent: SKiiP 25AC126V1
V23990-K305-F-PM	600	100	IGBT3	equivalent: SKiiP 28AC066V1
V23990-K237-F40-PM	1200	25	IGBT4	equivalent: SKiiP 23AC12T4V1
V23990-K238-F40-PM	1200	35	IGBT4	equivalent: SKiiP 24AC12T4V1
V23990-K239-F40-PM	1200	50	IGBT4	equivalent: SKiiP 25AC12T4V1
V23990-K230-F40-PM	1200	70	IGBT4	equivalent: SKiiP 26AC12T4V1

Part-No Voltage (V) Current [A] Technology Comments equivalent: SKiiP 37AC12T4V1 V23990-K438-F40-PM 1200 75 IGBT4 V23990-K438-F60-PM 1200 75 M6.1 V23990-K439-F40-PM 1200 IGBT4 equivalent: SKiiP 38AC12T4V1 100 V23990-K439-F60-PM 1200 100 M6.1 equivalent: SKiiP 39AC12T4V1 V23990-K430-F40-PM IGBT4 1200 150 V23990-K430-F60-PM 1200 150 M6.1

MiniSKiiP® PACK 3

Facts

- / Latest chip technology for low conduction losses and improved EMC behavior
- / Available with 1200 V IGBT4 and 1200 V Mitsubishi generation 6.1
- / Solderless spring contact mounting system


Housing

/ MiniSKiiP® 3

www.vincotech.com/MiniSKiiP-PACK-3

Applications

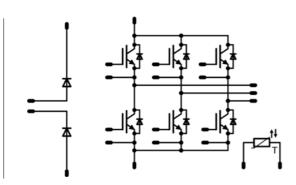
/ INDUSTRIAL DRIVES

SIXPACK + RECTIFIER

flowPACK 1+R

Facts

- / Active frontend for power regeneration
- / IGBT3 (600 V) or IGBT4 (1200 V) technology for low conduction losses and improved EMC
- / Integrated DC-link blocking diodes
- / Compact design


Housing

/ flow 1 12 mm

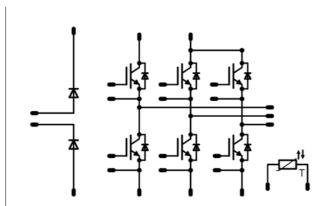
www.vincotech.com/flowPACK-1+R

Applications

/ INDUSTRIAL DRIVES

flowPACK 2+R

- / Active front end for power regeneration
- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low saturation losses
- / Integrated blocking diodes for DC-Link
- / Compact design


Housing

/ flow 2 17 mm

www.vincotech.com/flowPACK-2+R


Applications

/ INDUSTRIAL DRIVES

Part-No	Voltage (V)	Current (A)	Technology	Comments
10-F106R6A030SB-M434E08	600	30	IGBT3	
10-F106R6A030SB01-M434E18	600	30	IGBT3	w/o NTC
10-F106R6A050SB-M435E08	600	50	IGBT3	
10-F106R6A050SB01-M435E18	600	50	IGBT3	w/o NTC
10-F112R6A015SC-M438E08	1200	15	IGBT4	
10-F112R6A015SC01-M438E18	1200	15	IGBT4	w/o NTC
10-F112R6A035SC-M439E08	1200	35	IGBT4	
10-F112R6A035SC01-M439E18	1200	35	IGBT4	w/o NTC
10-F112R6A050SC-M430E08	1200	50	IGBT4	
10-F112R6A050SC01-M430E18	1200	50	IGBT4	w/o NTC

Part-No	Voltage (V)	Current (A)	Technology	Comments
30-F206R6A050SB-M442E	600	50	IGBT3	
30-F206R6A050SB01-M442E10	600	50	IGBT3	w/o NTC
30-F206R6A075SB-M443E	600	75	IGBT3	
30-F206R6A075SB-M443E10	600	75	IGBT3	w/o NTC
30-F206R6A100SB-M444E	600	100	IGBT3	
30-F206R6A100SB01-M444E10	600	100	IGBT3	w/o NTC
30-F206R6A150SB-M445E	600	150	IGBT3	
30-F206R6A150SB01-M445E10	600	150	IGBT3	w/o NTC
30-F212R6A050SC-M447E	1200	50	IGBT4	
30-F212R6A050SC01-M447E10	1200	50	IGBT4	w/o NTC
30-F212R6A075SC-M448E	1200	75	IGBT4	
30-F212R6A075SC01-M448E10	1200	75	IGBT4	w/o NTC
30-F212R6A100SC-M449E	1200	100	IGBT4	
30-F212R6A100SC01-M449E10	1200	100	IGBT4	w/o NTC
30-F212R6A150SC-M440E	1200	150	IGBT4	
30-F212R6A150SC01-M440E10	1200	150	IGBT4	w/o NTC

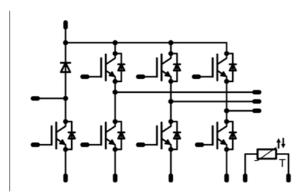
SEVENPACK

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-F0127PA008SC-L156E09	1200	8	IGBT4	
10-F0127PA015SC-L158E09	1200	15	IGBT4	
10-F0127PA025SC-L159E09	1200	25	IGBT4	

flow7PACK 0

Facts

- / Sixpack with brake
- / IGBT4 [1200 V] technology for low conduction losses
- / Compact and low inductance design
- / Built-in NTC


Housing

/ flow 0 17 mm

www.vincotech.com/flow7PACK-0

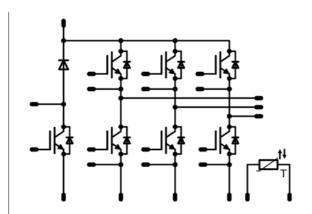
Applications

/ INDUSTRIAL DRIVES

flow7PACK 1

Facto

- / Sixpack with brake
- / IGBT4 (1200 V) technology for low conduction losses
- / Compact and low inductance design
- / Built-in NTC


Housing

/ flow 1 17 mm

www.vincotech.com/flow7PACK-1

Applications

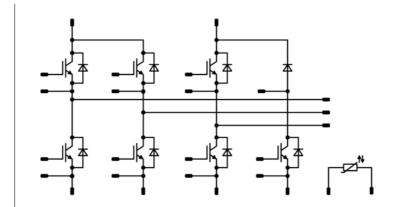
/ INDUSTRIAL DRIVES

Part-No	Voltage (V)	Current (A)	Technology	Comments
10-F1127PA025SC-L167E09	1200	25	IGBT4	
10-F1127PA035SC-L168E09	1200	35	IGBT4	
10-F1127PA050SC-L169E09	1200	50	IGBT4	

SEVENPACK

flow7PACK 2

Facts


- / Sixpack with brake
- / IGBT4 (1200 V) technology for low conduction losses
- / Compact and low inductance design
- / Built-in NTC

Housing

/ flow 2 17 mm www.vincotech.com/flow7PACK-2

Applications

/ INDUSTRIAL DRIVES

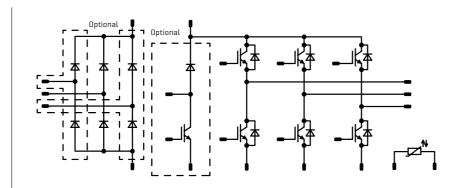
Part-No	Voltage (V)	Current [A]	Technology	Comments
30-F2127PA050SC-L177E09	1200	50	IGBT4	
30-F2127PA075SC-L178E09	1200	75	IGBT4	
30-F2127PA100SC-L179E09	1200	100	IGBT4	

flowPIM® 0

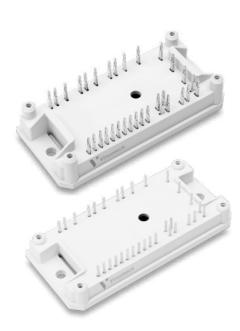
Facts

- / IGBT3 [600 V] and IGBT4 [1200 V] technology for low conduction and switching losses
- / Compact and low inductive design
- Optionally with enhanced rectifier, w/o brake, single-phase applications

Available options


- / w/o brake [C2x for 600 V, C4x for 1200 V]
- / enhanced rectifier (A3x for 600 V, A5x for 1200 V)
- / enhanced rectifier w/o brake (C3x for 600 V, C5 for 1200 V)
- Single-phase applications

Housing


- / flow 0 12 mm (xx8)
- / flow 0 17 mm (xx9)
- www.vincotech.com/flowPIM-0

Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

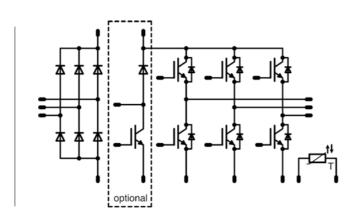
flowPIM® 1

Facts

- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low conduction and switching losses
- / Compact and low inductive design
- / Optionally w/o brake and with AlN DCB for improved $R_{th}\,$

Available options

/ w/o brake (Cxx)


Housing

- / flow 1 12 mm (x208, x418)
- / flow 1 17 mm [x20, x41]

www.vincotech.com/flowPIM-1

Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

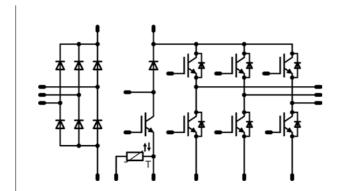
Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-P541-A28-PM	600	6	IGBT3	standard configuration with brake
V23990-P543-A28-PM	600	10	IGBT3	standard configuration with brake
V23990-P544-A28-PM	600	15	IGBT3	standard configuration with brake
V23990-P545-A28-PM	600	20	IGBT3	standard configuration with brake
V23990-P546-A28-PM	600	30	IGBT3	standard configuration with brake
V23990-P848-A48-PM	1200	4	IGBT4	standard configuration with brake
V23990-P849-A48-PM	1200	8	IGBT4	standard configuration with brake
V23990-P840-A48-PM	1200	15	IGBT4	standard configuration with brake

Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-P585-A208-PM	600	30	IGBT3	standard configuration with brake
V23990-P586-A208-PM	600	50	IGBT3	standard configuration with brake
V23990-P587-A208-PM	600	75	IGBT3	standard configuration with brake
V23990-P588-A418-PM	1200	15	IGBT4	standard configuration with brake
V23990-P589-A418-PM	1200	25	IGBT4	standard configuration with brake
V23990-P580-A418-PM	1200	35	IGBT4	standard configuration with brake
V23990-P580-A46-PM	1200	35	IGBT4	with brake, improved Rth (AlN)

flow90PIM 1

Facts

- / IGBT technology for low conduction losses and improved EMC behavior
- / Supports design with 90° angle
- / Clip-in PCB mounting
- / Clip or screw-on heat sink mounting


Housing

/ flow901

www.vincotech.com/flow90PIM-1

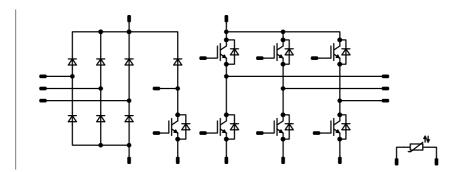
Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

flowPIM® 2

Facts

- / Latest chip technology for low conduction losses and improved EMC behavior
- / Available with 600 V IGBT3, 1200 V IGBT4 and 1200 V Mitsubishi generation 6.1
- / Compact and low inductive design


Housing

/ flow 2 17 mm

www.vincotech.com/flowPIM-2

Applications

/ INDUSTRIAL DRIVES

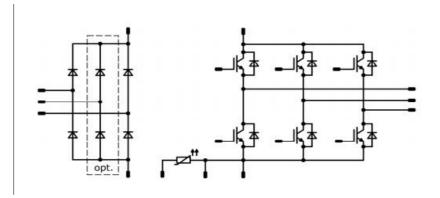
Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P631-A-PM	600	6	IGBT3	
V23990-P632-A-PM	600	10	IGBT3	
V23990-P633-A-PM	600	15	IGBT3	
V23990-P634-A-PM	600	20	IGBT3	
V23990-P635-A-PM	600	30	IGBT3	
V23990-P638-A40-PM	1200	4	IGBT4	
V23990-P639-A40-PM	1200	8	IGBT4	
V23990-P630-A40-PM	1200	15	IGBT4	
V23990-P630-A44-PM	1200	25	IGBT4	

Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-P763-A-PM	600	50	IGBT3	
V23990-P764-A-PM	600	75	IGBT3	
V23990-P765-A-PM	600	100	IGBT3	
V23990-P767-A-PM	1200	35	IGBT4	
V23990-P768-A-PM	1200	50	IGBT4	
V23990-P768-A60-PM	1200	50	M6.1	
V23990-P769-A-PM	1200	75	IGBT4	
V23990-P769-A60-PM	1200	75	M6.1	
V23990-P760-A-PM	1200	100	IGBT4	
V23990-P760-A60-PM	1200	100	M6.1	

MiniSKiiP® PIM 0

Facts

- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low conduction losses
- / Optinal with single-phase rectifier (600 V) K61xD
- / Solderless spring contact mounting system


Housing

/ MiniSKiiP® 0

www.vincotech.com/MiniSKiiP-PIM-0

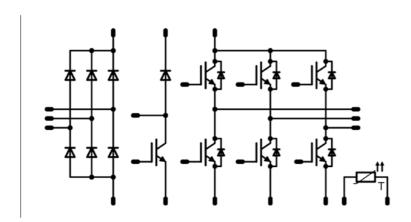
Applications

/ INDUSTRIAL DRIVES

MiniSKiiP® PIM 1

Facts

- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low conduction losses
- / Solderless spring contact mounting system


Housing

/ MiniSKiiP® 1

www.vincotech.com/MiniSKiiP-PIM-1

Applications

/ INDUSTRIAL DRIVES

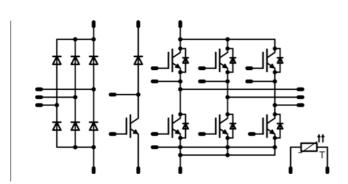
Part-No	Voltage (V)	Current [A]	Technology	Comments
80-M006PNB006SA-K614C	600	6	IGBT3	equivalent: SKiiP 01NxC066V3
80-M006PNB010SA-K615C	600	10	IGBT3	equivalent: SKiiP 02NxC066V3
80-M006PNB006SA01-K614D	600	6	IGBT3	equivalent: SKiiP 01NxC066V3
80-M006PNB010SA01-K615D	600	10	IGBT3	equivalent: SKiiP 02NxC066V3
80-M012PNB008SC-K619C41	1200	8	IGBT4	equivalent: SKiiP 03NAC12T4V1

Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-K201-A-PM	600	6	IGBT3	equivalent: SKiiP 11NAB066V1
V23990-K202-A-PM	600	10	IGBT3	equivalent: SKiiP 12NAB066V1
V23990-K203-A-PM	600	15	IGBT3	equivalent: SKiiP 13NAB066V1
V23990-K204-A-PM	600	20	IGBT3	equivalent: SKiiP 14NAB066V1
V23990-K209-A40-PM	1200	8	IGBT4	equivalent: SKiiP 11NAB12T4V1
V23990-K200-A40-PM	1200	15	IGBT4	equivalent: SKiiP 12NAB12T4V1

MiniSKiiP® PIM 2

Facts

- / IGBT3 (600 V) and IGBT4 (1200 V) technology for low conduction losses
- / Solder-less spring contact mounting system


Housing

/ MiniSKiiP® 2

www.vincotech.com/MiniSKiiP-PIM-2

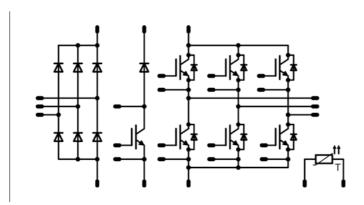
Applications

/ INDUSTRIAL DRIVES

MiniSKiiP® PIM 3

Facts

- / Latest chip technology for low conduction losses and improved EMC behavior
- / Available with 600 V IGBT3, 1200 V IGBT4 and 1200 V Mitsubishi generation 6.1
- / Solder-less spring contact mounting system


Housing

/ MiniSKiiP® 3

www.vincotech.com/MiniSKiiP-PIM-3

Applications

/ INDUSTRIAL DRIVES

Part-No	Voltage (V)	Current $[A]$	Technology	Comments
V23990-K222-A-PM	600	30	IGBT3	equivalent: SKiiP 25NAB066V1
V23990-K223-A-PM	600	50	IGBT3	equivalent: SKiiP 26NAB066V1
V23990-K229-A40-PM	1200	25	IGBT4	equivalent: SKiiP 23NAB12T4V1
V23990-K229-A41-PM	1200	25	IGBT4	equivalent: SKiiP 23NAB12T4V10 enhanced rectifier
V23990-K220-A40-PM	1200	35	IGBT4	equivalent: SKiiP 24NAB12T4V1
V23990-K220 A41-PM	1200	35	IGBT4	equivalent: SKiiP 24NAB12T4V10; enhanced rectifier

Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-K242-A-PM	600	75	IGBT3	equivalent: SKiiP 37NAB066V1
V23990-K243-A-PM	600	100	IGBT3	equivalent: SKiiP 38NAB066V1
V23990-K427-A40-PM	1200	35	IGBT4	equivalent: SKiiP 34NAB12T4V1
V23990-K428-A40-PM	1200	50	IGBT4	equivalent: SKiiP 35NAB12T4V1
V23990-K428-A60-PM	1200	50	M6.1	
V23990-K429-A40-PM	1200	75	IGBT4	equivalent: SKiiP 37NAB12T4V1
V23990-K429-A60-PM	1200	75	M6.1	
V23990-K420-A40-PM	1200	100	IGBT4	equivalent: SKiiP 38NAB12T4V1
V23990-K420-A60-PM	1200	100	M6.1	

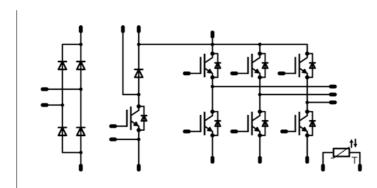
PIM WITH PFC

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-0B06PPA004RC-L022A09	600	4	RC IGBT	PFC: H5 IGBT+ Si diode (up to 100 kHz)
10-0B06PPA006RC-L023A09	600	6	RC IGBT	PFC: H5 IGBT+ Si diode (up to 100 kHz)
10-0B06PPA010RC-L025A09	600	10	RC IGBT	PFC: H5 IGBT+ Si diode (up to 100 kHz)
10-0B06PPA010RC01-L025A19	600	10	RC IGBT	PFC: F5 IGBT + SiC diode (up to 150 kHz)

flowPIM® 0B + PFC

Facts

- / High-speed IGBT PFC boost circuit
- / PFC switching frequencies up to 150 kHz
- / Open emitter topology
- / New ultra-compact housing
- / Single-screw heat sink mounting
- / Temperature sensor


Housing

/ flow 0B

www.vincotech.com/flowPIM-0B+PFC

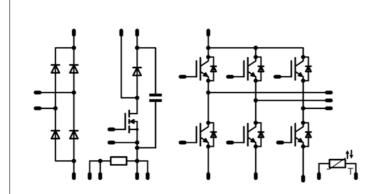
Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

flowPIM® 0 + PFC

Facts

- / PIM modules with PFC
- / PFC boost circuit with MOSFET
- / PFC switching frequency up to 200 kHz
- Integrated shunt resistor
- / Inverter part with IGBT3 technology
- / Open emitter configuration
- / Clip-in PCB mounting
- / Temperature sensor


Housing

/ flow 0 17 mm

www.vincotech.com/flowPIM-0+PFC

Applications

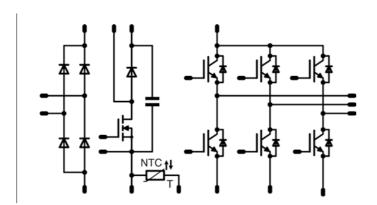
/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-F006PPA006SB-M682B	600	6	IGBT3	
10-F006PPA010SB-M683B	600	10	IGBT3	
10-F006PPA015SB-M684B	600	15	IGBT3	
10-F006PPA020SB-M685B	600	20	IGBT3	
10-F006PPA020SB01-M685B10	600	20	IGBT3	SiC PFC diode

flow90PIM 1 + PFC

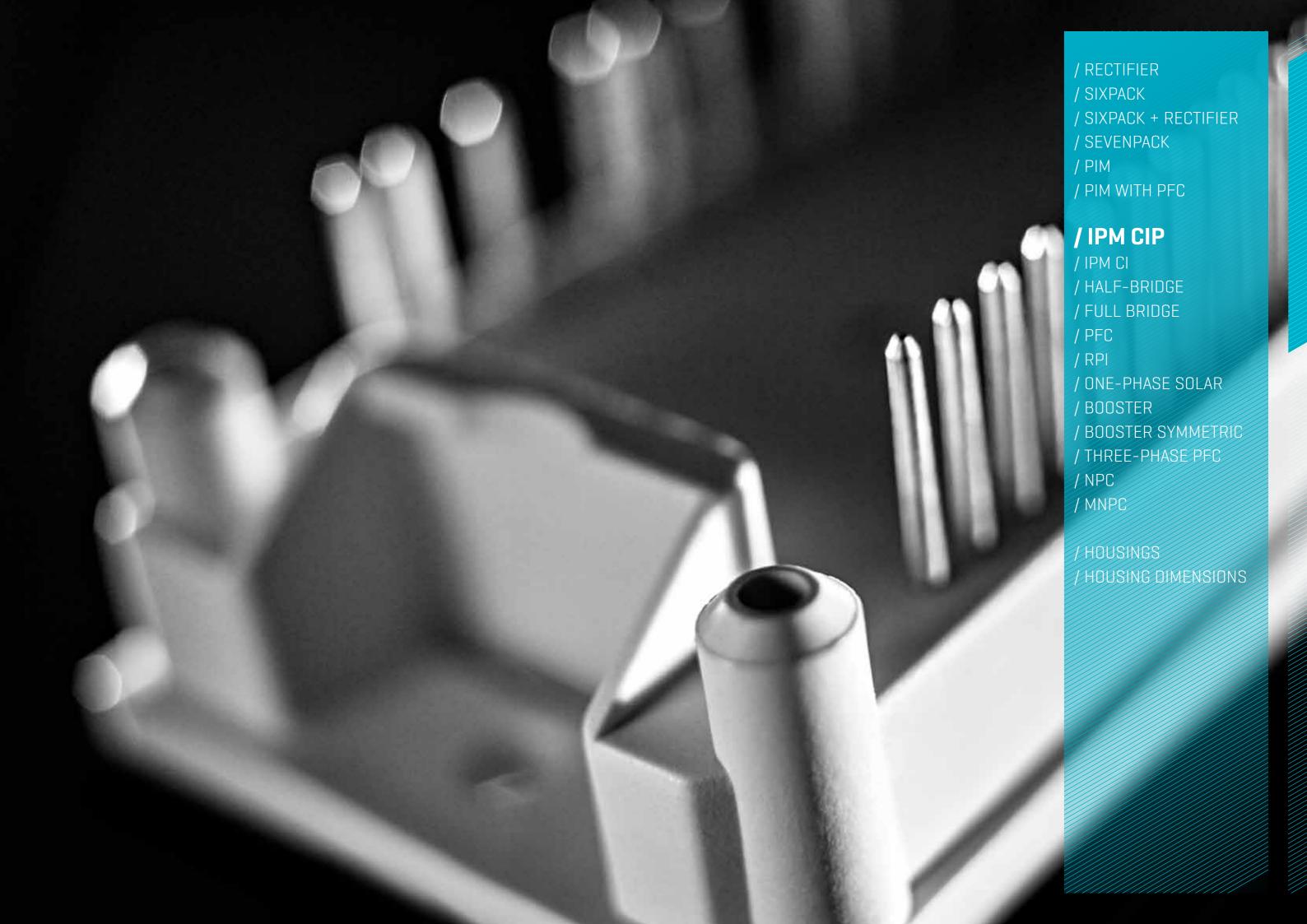
Facts

- / PIM modules with MOSFET (CoolMOS™)
- / PFC boost circuit
- / PFC switching frequency up to 200 kHz
- / Inverter part with IGBT3 technology
- / Open emitter configuration
- / Clip-in PCB mounting
- / Supports design with 90° angle


Housing

/ flow901

www.vincotech.com/flow90PIM-1+PFC


Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

PIM WITH PFC

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-R106PPA020SB01-M934A	600	20	MOSFET	

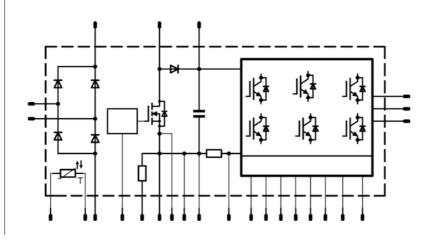
IPM CIP

Part-No	Voltage (V)	Current [A]	Technology	Comments
20-1B06IPB004RC-P952A40	600	4	RC IGBT	Integrated PFC controller
20-1B06IPB004RC01-P952A45	600	4	RC IGBT	
20-1B06IPB006RC01-P953A45	600	6	RC IGBT	
20-1B06IPB010RC-P955A40	600	10	RC IGBT	Integrated PFC controller
20-1B06IPB010RC01-P955A45	600	10	RC IGBT	

flowIPM 1B (CIP)

Facts

- / Rectifier, PFC, three-phase inverter
- / Integrated DC capacitor
- / Laser trimmed shunts for current measurement
- / Complete gate drive circuit (incl. bootstrap)
- / Optional integrated PFC controller
- / Temperature sensor


Housing / flow 1B

www.vincotech.com/flowIPM-1B-CIP

Applications

/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

/ P95x / Gate Driver

 Part-No
 Voltage (V)
 Current (A)
 Technology
 Comments

 20-1B12IPA008SC-L239C09
 1200
 8
 IGBT4

IGBT4

IGBT4

Press-fit

w/o rectifier

20-FB12IPA008SC-L239C08Y

20-1B12IPA015SC-L579F09

1200

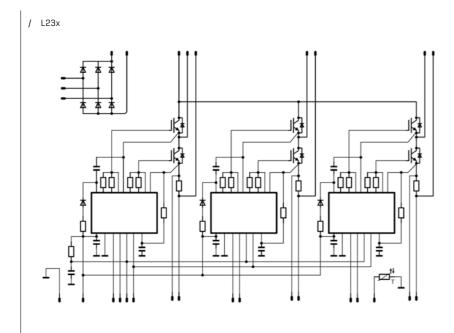
1200

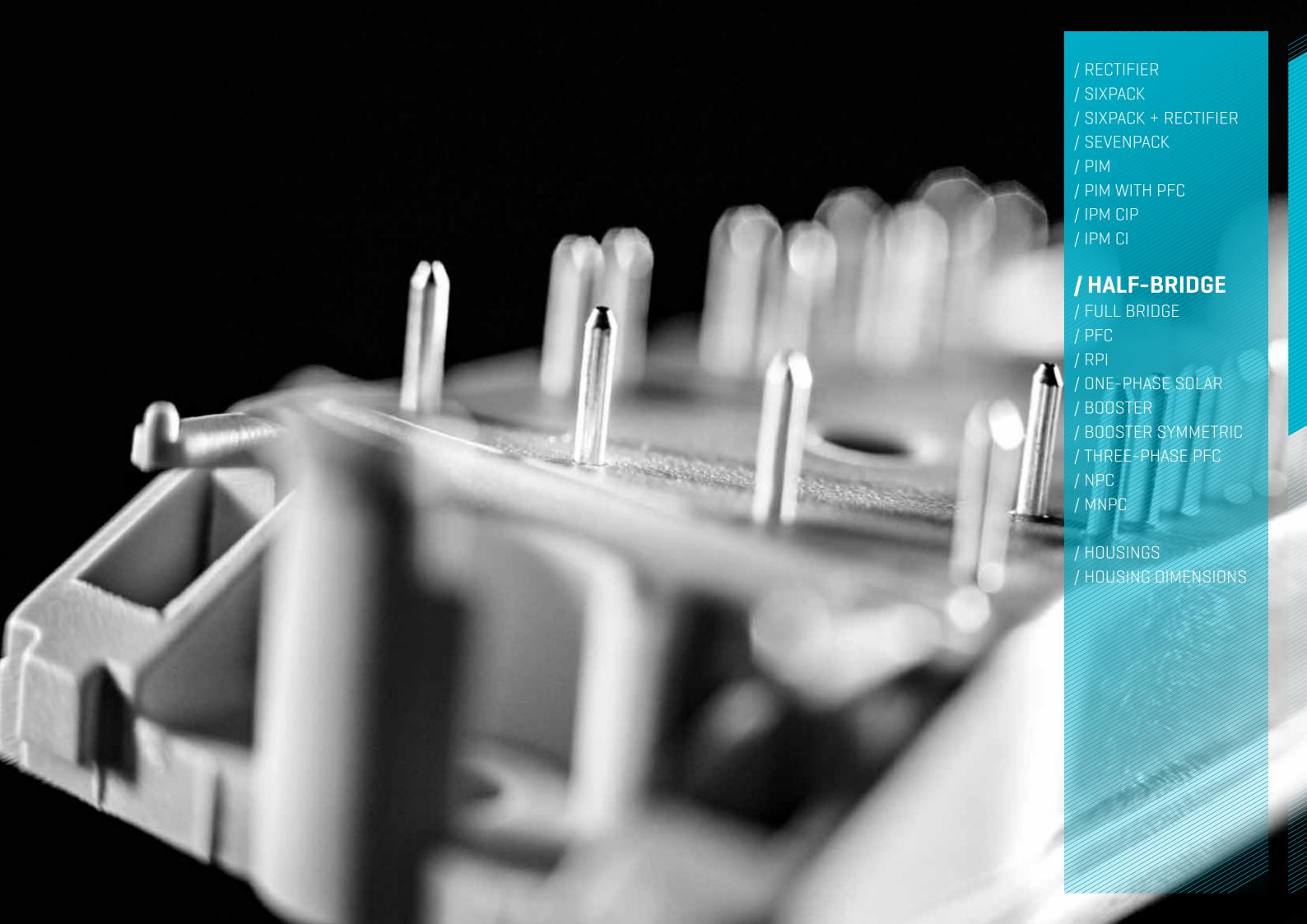
8

15

flowIPM 1B (CI)

Facts


- / Three-phase input rectifier and three-phase inverter
- / Laser trimmed shunt resistors in all three low side emitters
- / Three complete gate drive circuits [incl. bootstrap]
- / Temperature sensor


Housing / flow 1B

www.vincotech.com/flowIPM-1B-CI

Applications


/ INDUSTRIAL DRIVES / EMBEDDED DRIVES

HALF-BRIDGE

flowPHASE 0

Facts

- / IGBT4 (1200 V) technology for low conduction losses and improved EMC behavior
- / IGBT3 (600 V) technology for low conduction losses
- / Clip-in PCB mounting

Housing

- / flow 0 17 mm (xx9)
- / flow 0 12 mm (xx8)

www.vincotech.com/flowPHASE-0

Applications

/ INDUSTRIAL DRIVES
/ POWER SUPPLY / SOLAR INVERTERS
/ UPS / WELDING

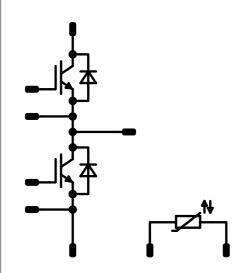
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-F0062PA075SA-P993F09	600	75	IGBT3	
10-FZ062PA075SA-P993F08	600	75	IGBT3	
10-F0062PA075SA01-P993F19	600	75	IGBT3	improved Rth (AlN)
10-FZ062PA075SA01-P993F18	600	75	IGBT3	improved Rth [ALN]
10-F0062PA100SA01-P994F19	600	100	IGBT3	improved Rth (ALN)
10-FZ062PA100SA-P994F08	600	100	IGBT3	
10-FZ062PA150SA-P995F08	600	150	IGBT3	
10-F0062PA150SA01-P995F19	600	150	IGBT3	improved Rth (ALN)
10-FZ062PA150SA01-P995F18	600	150	IGBT3	improved Rth (AlN)
10-F0062PA200SA01-P996F19	600	200	IGBT3	improved Rth (AlN)
10-FZ062PA200SA01-P996F18	600	200	IGBT3	improved Rth (ALN)
10-F0062PA200SA-P996F09	600	200	IGBT3	improved regretary
10-FZ062PA200SA-P996F08	600	200	IGBT3	
	1000	50	1007.11	
10-F0122PA050SC01-P997F19	1200	50	IGBT4	improved Rth (AlN)
10-FZ122PA050SC01-P997F18 10-FZ122PA050SC-P997F08	1200	50	IGBT4	improved Rth (AlN)
10-L71555402020-5331L00	1200	50	IGBT4	
10-F0122PA075SC01-P998F19	1200	75	IGBT4	improved Rth [AlN]
10-FZ122PA075SC01-P998F18	1200	75	IGBT4	improved Rth (AlN)
10-F0122PA075SC-P998F09	1200	75	IGBT4	
10-FZ122PA075SC-P998F08	1200	75	IGBT4	
10-F0122PA100FC01-P999F59	1200	100	IGBT2 HS	improved Rth [AlN]
10-FZ122PA100FC01-P999F58	1200	100	IGBT2 HS	improved Rth (AlN)
10-FZ122PA100SC02-P999F78	1200	100	IGBT4 HS	
10-F0122PA100SC01-P999F19	1200	100	IGBT4	improved Rth (AlN)
10-FZ122PA100SC01-P999F18	1200	100	IGBT4	improved Rth (AlN)
10-F0122PA100SC-P999F09	1200	100	IGBT4	
10-FZ122PA100SC-P999F08	1200	100	IGBT4	
10-F0122PA150SC-P990F09	1200	150	IGBT4	
10-FZ122PA150SC-P990F08	1200	150	IGBT4	
10-F0122PA150SC01-P990F19	1200	150	IGBT4	improved Rth (ALN)
10-FZ122PA150SC01-P990F18	1200	150	IGBT4	improved Rth (ALN)

HALF-BRIDGE

flowPHASE 0 + NTC

Facts

- / High-voltage, half-bridge topology
- / High-speed switching up to 50 kHz
- / High power density
- / Ultra-low conduction and switching losses
- / Best-in-class R_{th} with AlN DCB


Housing

/ flow 0 12 mm

www.vincotech.com/flowPHASE-0

Applications

- / INDUSTRIAL DRIVES
 / POWER SUPPLY / SOLAR INVERTERS
 / UPS / WELDING

Part-No	Voltage (V)	Current [A]	Technology	Comments
	·ottago (·)	545 ()		
10-FZ072PB120SM03-M815F03	650	120	IGBT H5	fsw > 30kHz
10-FZ122PB040FV-M817F88	1200	40	IGBTF HS	Solder pins
10-PZ122PB040FV-M817F88Y	1200	40	IGBTF HS	Press-fit
10-FZ122PB040FV01-M817F98	1200	40	IGBTF HS	Solder pins; AlN DCB
10-PZ122PB040FV01-M817F98Y	1200	40	IGBTF HS	Press-fit; ALN DCB
10-F0122PB050SC02-M817F09	1200	50	IGBT4	Solder pins
10-FZ122PB050SC02-M817F08	1200	50	IGBT4	Solder pins
10-P0122PB050SC02-M817F09Y	1200	50	IGBT4	Press-fit
10-PZ122PB050SC02-M817F08Y	1200	50	IGBT4	Press-fit
10-F0122PB050SC03-M817F19	1200	50	IGBT4	Solder pins; ALN DCB
10-FZ122PB050SC03-M817F18	1200	50	IGBT4	Solder pins; ALN DCB
10-P0122PB050SC03-M817F19Y	1200	50	IGBT4	Press-fit; ALN DCB
10-PZ122PB050SC03-M817F18Y	1200	50	IGBT4	Press-fit; ALN DCB
10-FZ122PB050SH-M817F28	1200	50	IGBT4 HS	Solder pins
10-PZ122PB050SH-M817F28Y	1200	50	IGBT4 HS	Press-fit
10-FZ122PB050SH01-M817F38	1200	50	IGBT4 HS	Solder pins; ALN DCB
10-PZ122PB050SH01-M817F38Y	1200	50	IGBT4 HS	Press-fit; ALN DCB
10-F0122PB075SC02-M818F09	1200	75	IGBT4	Solder pins
10-FZ122PB075SC-M818F08	1200	75	IGBT4	Solder pins
10-P0122PB075SC02-M818F09Y	1200	75	IGBT4	Press-fit
10-PZ122PB075SC02-M818F08Y	1200	75	IGBT4	Press-fit
10-F0122PB075SC03-M818F19	1200	75	IGBT4	Solder pins; ALN DCB
10-FZ122PB075SC03-M818F18	1200	75	IGBT4	Solder pins; ALN DCB
10-P0122PB075SC03-M818F19Y	1200	75	IGBT4	Press-fit; ALN DCB
10-PZ122PB075SC03-M818F18Y	1200	75	IGBT4	Press-fit; ALN DCB
10-FZ122PB075SH-M818F28	1200	75	IGBT4 HS	Solder pins
10-PZ122PB075SH-M818F28Y	1200	75	IGBT4 HS	Press-fit
10-FZ122PB080FV-M818F88	1200	80	IGBTF HS	Solder pins
10-PZ122PB080FV-M818F88Y	1200	80	IGBTF HS	Press-fit
10-FZ122PB080FV01-M818F98	1200	80	IGBTF HS	Solder pin; AlN DCB
10-PZ122PB080FV01-M818F98Y	1200	80	IGBTF HS	Press-fit; ALN DCB
10-F0122PB100SC02-M819F09	1200	100	IGBT4	Solder pins
10-FZ122PB100SC02-M819F08	1200	100	IGBT4	Solder pins
10-P0122PB100SC02-M819F09Y	1200	100	IGBT4	Press-fit
10-PZ122PB100SC02-M819F08Y	1200	100	IGBT4	Press-fit
10-F0122PB100SC03-M819F19	1200	100	IGBT4	Solder pins; AlN DCB
10-FZ122PB100SC03-M819F18	1200	100	IGBT4	Solder pins; AlN DCB
10-P0122PB100SC03-M819F19Y	1200	100	IGBT4	Press-fit; ALN DCB
10-PZ122PB100SC03-M819F18Y	1200	100	IGBT4	Press-fit; ALN DCB
10-FZ122PB075SH01-M818F38	1200	100	IGBT4 HS	Solder pins; ALN DCB
10-PZ122PB075SH01-M818F38Y	1200	100	IGBT4 HS	Press-fit; ALN DCB
10-FZ122PB100SH01-M819F38	1200	100	IGBT4 HS	Solder pins; ALN DCB
10-PZ122PB100SH01-M819F38Y	1200	100	IGBT4 HS	Press-fit; ALN DCB
10-FZ122PB100SH-M819F28	1200	100	IGBT4 HS	Solder pins
10-PZ122PB100SH-M819F28Y	1200	100	IGBT4 HS	Press-fit

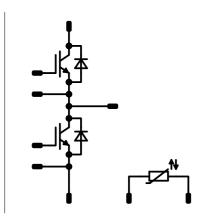
Part-No	Voltage (V)	Current [A]	Technology	Comments
80-M2072PA150SC-K704F40	650	150	IGBT3	
80-M2072PA200SC-K705F40	650	200	IGBT3	
80-M2122PA150SC-K708F40	1200	150	IGBT4	
80-M2122PA200SC-K709F40	1200	200	IGBT4	

HALF-BRIDGE

MiniSkiiP® DUAL 2

Facts

- / 1200 V Trench IGBT4, 650 V Trench with anti-parallel CAL-diodes
- / Standard MiniSKiiP® package sizes for modern inverter designs up to 90 kW motor power
- / Solder-less spring contact mounting system
- / Integrated NTC temperature sensor


Housing

/ MiniSKiiP® 2

www.vincotech.com/MiniSKiiPDUAL-2

Applications

- / INDUSTRIAL DRIVES / POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

MiniSkiiP® DUAL 3

Facts

- 1200 V Trench IGBT4, 650 V Trench IGBTs with anti-parallel CAL-diodes
- / Standard MiniSKiiP® package sizes for modern inverter designs up to 90 kW motor power
- / Solder-less spring contact mounting system
- / Integrated NTC temperature sensor

Housing

/ MiniSKiiP® 3


www.vincotech.com/MiniSKiiPDUAL-3

Applications

- / INDUSTRIAL DRIVES / POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

- ┌──

Part-No	Voltage (V)	Current [A]	Technology	Comments
80-M3072PA300SC-K836F30	650	300	IGBT3	
80-M3122PA300SC-K839F42	1200	300	IGBT4	
80-M3122PA400SC-K830F40	1200	400	IGBT4	

Part-No	Voltage [V]	Current [A]	Technology	Comments
V23990-P623-F24-PM	600	50	IGBT3	$f_{SW} < 30 \text{ kHz}$
V23990-P623-F04-PM	600	60	IGBT2 HS	fsw < 100 kHz
V23990-P623-F14-PM	600	60	IGBT2 HS	fsw < 100 kHz improved Rth (AlN)
V23990-P624-F24-PM	600	75	IGBT3	f _{SW} < 30 kHz
V23990-P625-F24-PM	600	100	IGBT3	fsw < 30 kHz
V23990-P623-F59-PM	650	50	IGBT H5	fsw < 100 kHz
V23990-P627-F88-PM	1200	15	IGBT4 HS	fsw < 100 kHz
V23990-P629-F48-PM	1200	40	IGBT4 HS	fsw < 100 kHz

Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P623-F24-PM	600	50	IGBT3	f _{SW} < 30 kHz
V23990-P623-F04-PM	600	60	IGBT2 HS	fsw < 100 kHz
V23990-P623-F14-PM	600	60	IGBT2 HS	fsw < 100 kHz improved Rth (AlN)
V23990-P624-F24-PM	600	75	IGBT3	f _{SW} < 30 kHz
V23990-P625-F24-PM	600	100	IGBT3	fsw < 30 kHz
V23990-P623-F59-PM	650	50	IGBT H5	fsw < 100 kHz
V23990-P627-F88-PM	1200	15	IGBT4 HS	fsw < 100 kHz
V23990-P629-F48-PM	1200	40	IGBT4 HS	fsw < 100 kHz

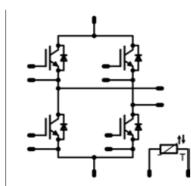
fastPACK 0 H

Facts

- / High efficient H-bridge
- / High-speed IGBT
- / Low inductive design
- / High switching frequency
- / Clip-in PCB mounting

Applications

Housing


/ flow 0 12 mm

/ flow 0 17 mm 4-clip

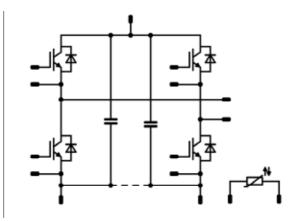
/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

www.vincotech.com/fastPACK-0-H

fastPACK 0 HC

Facts

- / High efficient H-bridge
- / High-speed IGBT
- / Integrated capacitors
- / Low inductive design
- / High switching frequency
- / Clip-in PCB mounting


Housing

/ flow 0 17 mm 4-clip

www.vincotech.com/fastPACK-0-HC

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

Part-No	Voltage (V)	Current [A]	Technology	Comments
V23990-P723-F04-PM	600	60	IGBT2 HS	f _{SW} < 100 kHz
10-FZ074PA030SM-L623F08	650	30	IGBT H5	fsw > 30kHz
10-PZ074PA030SM-L623F08Y	650	30	IGBT H5	fsw > 30kHz
10-FZ074PA050SM-L624F08	650	50	IGBT H5	fsw > 30kHz
10-PZ074PA050SM-L624F08Y	650	50	IGBT H5	fsw > 30kHz
10-PD074PA075SM-L625F07Y	650	75	IGBT H5	fsw > 30kHz
10-FZ074PA075SM-L625F08	650	75	IGBT H5	fsw > 30kHz
10-PZ074PA075SM-L625F08Y	650	75	IGBT H5	fsw > 30kHz
V23990-P727-F88-PM	1200	15	IGBT4 HS	fsw < 100 kHz
V23990-P729-F56-PM	1200	25	IGBT2 Q	fsw < 50 kHz improved Rth (AlN) hyperfast diodes
V23990-P729-F54-PM	1200	25	IGBT2 Q	f _{SW} < 50 kHz improved R _{th} (AlN)
V23990-P729-F46-PM	1200	25	IGBT2 Q	fsw < 50 kHz hyperfast diodes
V23990-P729-F44-PM	1200	25	IGBT2 Q	fsw < 50 kHz
V23990-P729-F48-PM	1200	40	IGBT4 HS	f _{SW} < 100 kHz

10-PY124PA080FV-L589F88Y IGBTF HS 1200

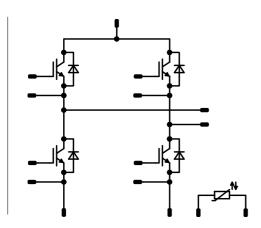
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FY064PA050SG10-M582F08	600	50	IGBT3 HS	
10-FY074PA050SM-M582F38	650	50	IGBT H5	
10-FY064PA075SG-M583F08	650	75	IGBT3 HS	
10-FY124PA040SH-L588F48	1200	40	IGBT4 HS	
10-PY124PA040SH-L588F48Y	1200	40	IGBT4 HS	NE'
10-FY124PA040FV-L588F88	1200	40	IGBTF HS	
10-PY124PA040FV-L588F88Y	1200	40	IGBTF HS	
10-FY124PA080SH-L589F48	1200	80	IGBT4 HS	
10-PY124PA080SH-L589F48Y	1200	80	IGBT4 HS	
10-FY124PA080FV-L589F88	1200	80	IGBTF HS	

FULL-BRIDGE

flowPACK 1 H	
--------------	--

Facts

- / Low inductance ultra highspeed IGBT
- / Ultra-fast freewheeling diode
- / Integrated temperature sensor


Housing

/ flow 1 12 mm

www.vincotech.com/flowPACK-1-H

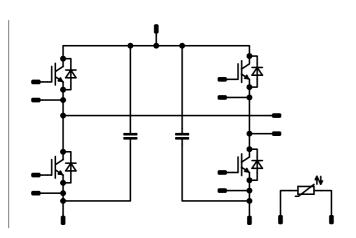
Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

fastPACK 1 HC

Facts

- / High-efficient H-Bridge
- / Open emitter topology
- / Fast IGBT H5 + Fast Rapid 1 Diode
- / Integrated capacitors
- / Integrated thermistor


Housing

/ flow 1 12 mm

www.vincotech.com/fastPACK-1-HC

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

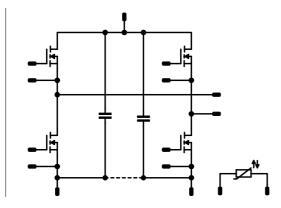
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FY074PA100SM01-L583F18	650	100	IGBT H5	f_{sw} > 30kHz, full current FWD
10-PY074PA100SM01-L583F18Y	650	100	IGBT H5	f _{sw} > 30kHz, full current FWD
10-FY074PA100SM-L583F08	650	100	IGBT H5	f _{sw} > 30kHz

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ074PA080CR-L622F68	650	20	MOSFET	
10-PZ074PA080CR-L622F68Y	650	20	MOSFET	

fastPACK 0 MOS

Facts

- / High-speed MOS
- / Integrated fast body diode, best for ZVS
- / Limited voltage overshoot during hard
- Reduced turn on and turn off delay times
- / Softer commutation behavior and therefore better EMI ehavior
- / Integrated capacitors
- / NTC


Housing

/ flow 0 12 mm

www.vincotech.com/fastPACK-0-MOS

Applications

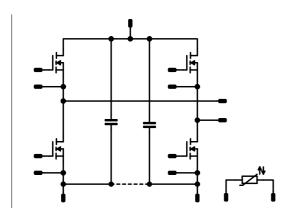
/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

fastPACK 1 MOS

/ High-speed MOS

Facts

- / Integrated fast body diode, best for ZVS
- / Limited voltage overshoot during hard commutation
- Reduced turn on and turn off delay time
- Softer commutation behavior and therefore better EMI behavior
- / Integrated capacitors
- / NTC


Housing

/ flow 1 12 mm

www.vincotech.com/fastPACK-1-MOS

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

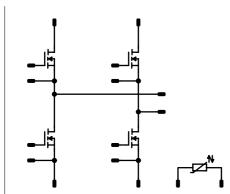
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FY074PA040CR-L581F78	650	40	MOSFET	
10-PY074PA040CR-L581F78Y	650	40	MOSFET	
10-FY074PA020CR-L582F78	650	80	MOSFET	
10-PY074PA020CR-L582F78Y	650	80	MOSFET	

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PC094PB065ME01-L637F06Y	900	33	SIC MOSFET	f _{sw} up to 400 kHz

fastPACK 0 SiC

Facts

/ NTC


/ High frequency SiC MOS
/ Suitable for hard switching/soft switching
/ Increased power density

Housing

/ flow 0 12 mm www.vincotech.com/fastPACK-0-SiC

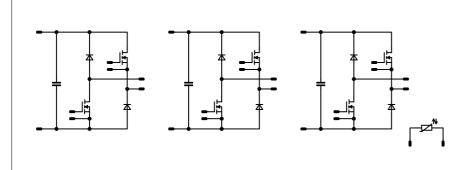
Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS / WELDING

flowPACK 0 SiC

Facts

- / Three-phase inverter topology with split output
- / SiC-Power MOSFET's and Schottky Diodes
- / Switching frequency >100 kHz
- Improved switching behavior (reduced turn on energy and X-conduction)
- / Very low inductance with integrated DC-capacitors
- / Temperature sensor


Housing

/ flow 0 12 mm

www.vincotech.com/fastPACK-0-SiC

Applications

/ INDUSTRIAL DRIVES / POWER SUPPLY / SOLAR INVERTERS / UPS

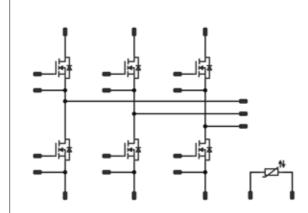
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PZ126PA080ME-M909F18Y	1200	35	SIC MOSFET	SiC MOSFET 2 nd gen + SiC diode from Wolfspeed™
10-PZ126PA080MR-M909F28Y	1200	35	SIC MOSFET	SiC MOSFET 2 nd gen + SiC diode from ROHM™

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PY126PA020MR-L227F28Y	1200	50	SIC MOSFET	SiC MOSFET from ROHM™
10-PY126PA020ME-L227F18Y	1200	50	SIC MOSFET	SiC MOSFET from Wolfspeed™

flowPACK 1 SiC

Facts

- / Flexible open source/open drain topology
- / Possible to be used in different applications' designs
- / High efficiency at very light loads
- / High switching frequencies up to 200 kHz
- / NTC


Housing

/ flow 1 12 mm

www.vincotech.com/flowPACK-1-SiC

Applications

/ INDUSTRIAL DRIVES / POWER SUPPLY / SOLAR INVERTERS / UPS

Part-No Voltage [V] Current [A] Technology Comments 10-F0062TA099FS-P980D59 600 18 MOSFET

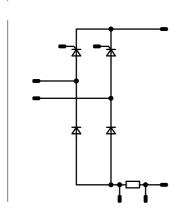
flowPFC 0

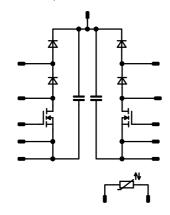
Facts

- / C6 series CoolMos $^{\mbox{\scriptsize TM}}$ and SiC boost diode
- / Compact and low inductance design
- / Suitable for Interleaved topology
- / Suitable for current sensing in source
- / Vincotech clip-in housing

Information

D18: w/o SCR, current sense in drain D28: with SCR, curretn sense in drain


Housing


/ flow 0 17 mm

www.vincotech.com/flowPFC-0

Applications

/ EMBEDDED DRIVES / POWER SUPPLY / WELDING

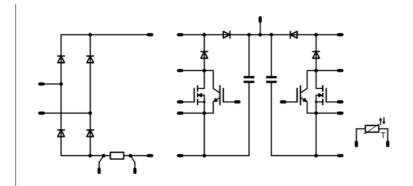
flowPFC 0 CD

Facts

- / Current sense in collector / drain
- / Compact and low inductance design
- / Suitable for interleaved switching PFC for welding, SMPS, motor drives, chargers
- / Available with Press-fit pins

Information

D18: w/o SCR, current sense in drain D28: with SCR, curretn sense in drain


Housing

/ flow 0 12 mm

www.vincotech.com/flowPFC-0-CD

Applications

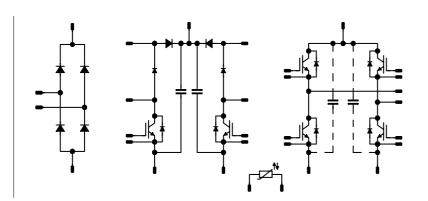
/ EMBEDDED DRIVES / POWER SUPPLY / WELDING

Part-No	Voltage (V)	Current (A)	Technology	Comments
10-FZ062TA099FH-P980D18	600	25	MOSFET	fsw < 400 kHz
10-FZ062TA099FH01-P980D28	600	25	MOSFET	f _{SW} < 400 kHz
10-FZ062TA030FB-P983D18	600	30	IGBT HS	fsw < 100 kHz
10-FZ062TA030FB01-P983D28	600	30	IGBT HS	fsw < 100 kHz
10-FZ062TA040FB-P984D18	600	50	IGBT HS	f _{SW} < 100 kHz
10-FZ062TA040FB01-P984D28	600	50	IGBT HS	fsw < 100 kHz
10-FZ062TA015SM-P985D13	650	15	IGBT H5	
10-FZ062TA030SM-P986D13	650	30	IGBT H5	NF
10-FZ062TA050SM-P987D13	650	50	IGBT H5	

flowRPI 1

Facts

- / 3-in-1 solution for compact application design
- / Rectifier, dual PFC and inverter integrated
- / Latest chip technologies
- / Ultra-fast switching
- / Ultra-low conduction and switching losses
- / Enhanced layout to reduce EMI


Housing

- / flow 1 12 mm
- / flow 1 17 mm

www.vincotech.com/flowRPI-1

Applications

/ POWER SUPPLY / SOLAR INVERTERS / WELDING

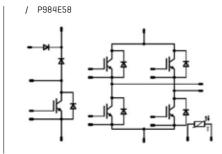
Part-No	Voltage (V)	Current [A]	Technology	Comments
10 5/0774401504 510000	050	1.5	IODT HE	
10-FY07ZAA015SM-L512B28	650	15	IGBT H5	
10-FY07ZAA030SM-L513B28	650	30	IGBT H5	
10-F107ZAA045SM-L514B19	650	45	IGBT H5	
10-FY07ZAA050SM-L514B28	650	50	IGBT H5	
10-FY07ZAB050SM-L514B08	650	50	IGBT H5	Wide input voltage range rated PFC
10-F107ZAA060SM-L515B19	650	60	IGBT H5	
10-FY07ZAB075SM-L515B08	650	75	IGBT H5	Wide input voltage range rated PFC

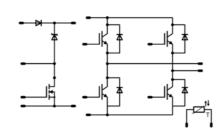
flowSOL 0 BI (TL)

Facts

- / High efficiency
- / Dedicated designs for transformer-based and transformer-less topologies
- / Ultra-high switching frequency
- Fast IGBT H5

Housing


/ flow 0 12 mm


www.vincotech.com/flowSOL-0-BI-TL

Applications

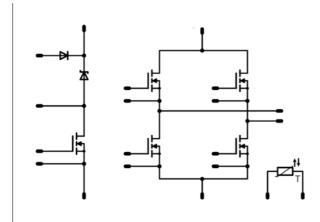
/ P984E68

/ POWER SUPPLY / SOLAR INVERTERS

flowSOL 0 BI (T) primary

Facts

- / Transformer-less solar inverter
- / High efficiency, $CoolMOS^{TM} + SiC$ diode
- / Ultra-high switching frequency


Housing

/ flow 0 12 mm

www.vincotech.com/flowSOL-0-BI-T-primary

Applications

/ POWER SUPPLY / SOLAR INVERTERS

ONE-PHASE SOLAR

Part-No	Voltage (V)	Current (A)	Technology	Comments
10-PZ07BIA030SM01-P894E68Y	650	30	IGBT H5	70 mΩ MOSFET (boost) + SiC diode (boost) and IGBT H5 (H-bridge)
10-PZ07BIA030SM02-P894E58Y	650	30	IGBT H5	IGBT H5 (boost + H-bridge) + Si diode in boost

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ06BIA083FI-P896E	600	30	MOSFET	

ONE-PHASE SOLAR

Part-No Voltage [V] Current [A] Technology Comments 10-FY06BIA050SG-M523E18 600 50 IGBT3 HS 10-FY07BIA041MC-M528E58 650 33 MOSFET SiC diode 10-FY07BIA041MF-M528E68 650 33 MOSFET 10-FY07BIA050SM-M523E38 650 50 IGBT H5 10-PY07BIA050SM-M523E38Y 650 50 IGBT H5					
10-FY07BIA041MC-M528E58 650 33 MOSFET SiC diode 10-FY07BIA041MF-M528E68 650 33 MOSFET 10-FY07BIA050SM-M523E38 650 50 IGBT H5	Part-No	Voltage (V)	Current (A)	Technology	Comments
10-FY07BIA041MC-M528E58 650 33 MOSFET SiC diode 10-FY07BIA041MF-M528E68 650 33 MOSFET 10-FY07BIA050SM-M523E38 650 50 IGBT H5	10-FY06RIA050SG-M523F18	600	50	IGBT3 HS	
10-FY07BIA041MF-M528E68 650 33 MOSFET 10-FY07BIA050SM-M523E38 650 50 IGBT H5	10 1 100011100000 11010110	000		.65.66	
10-FY07BIA050SM-M523E38 650 50 IGBT H5	10-FY07BIA041MC-M528E58	650	33	MOSFET	SiC diode
	10-FY07BIA041MF-M528E68	650	33	MOSFET	
10-PY07BIA050SM-M523E38Y 650 50 IGBT H5	10-FY07BIA050SM-M523E38	650	50	IGBT H5	NEV
	10-PY07BIA050SM-M523E38Y	650	50	IGBT H5	NEV

flowSOL 1 BI (TL)

Facts

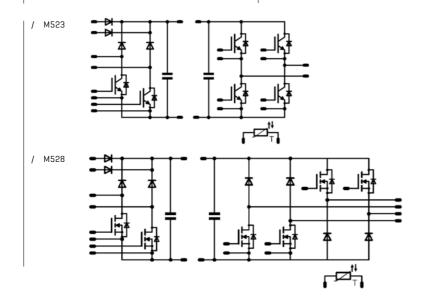
- / Dual input booster with bypass
- / Temperature sensor
- / Integrated capacitor

MOSFET

- / Full reactive power capability
- / MOSFET with fast diode or SiC diode
- / Highest efficiency
- / Split output for deactivation of the intrinsic reverse diodes of the MOSFET
- / Highest efficiency for reactive power
- / No x-conduction problem [no negative gate bias required]

IGBT

- / Resonant H-Bridge with high-speed IGBT
- / Use with flowSOL 1 BI (T) secondary


Housing

/ flow 1 12 mm

www.vincotech.com/flowSOL-1-BI-TL

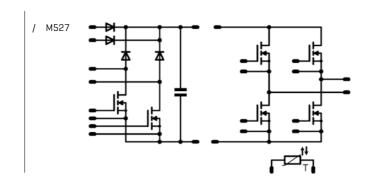
Applications

/ POWER SUPPLY / SOLAR INVERTERS

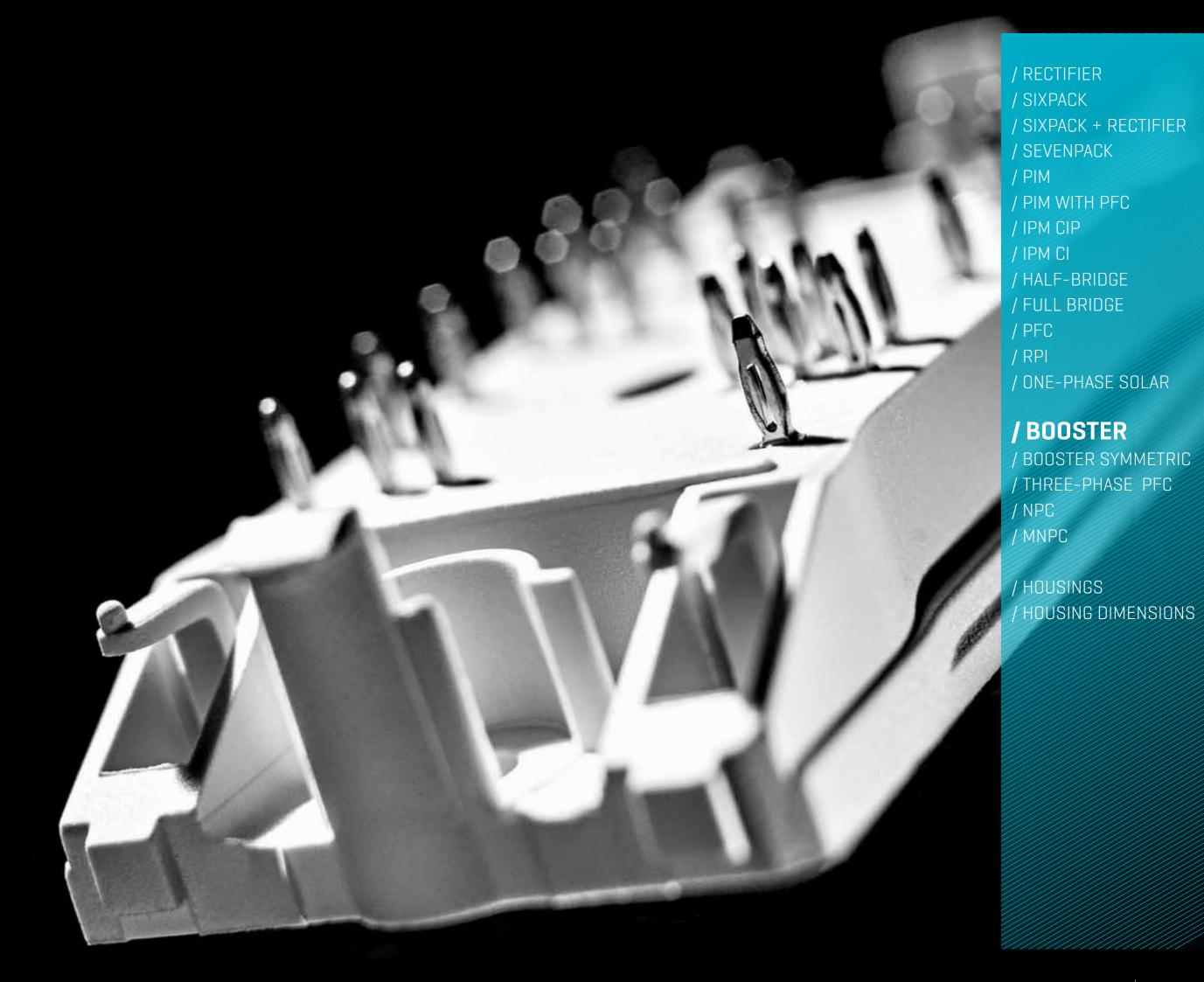
flowSOL 1 BI (T) primary

Facts

- / Dual input booster with bypass
- / Resonant H-Bridge with high-speed MOSFET
- / Integrated capacitor


Housing

/ flow 1 12 mm


www.vincotech.com/flowSOL-1-BI-T-primary

Applications

/ POWER SUPPLY / SOLAR INVERTERS

Part-No	Voltage (V)	Current [A]	Technology	Comments
	2 ()			
10-EY06BIA080ME-M527E58	650	20	MOSEFT	

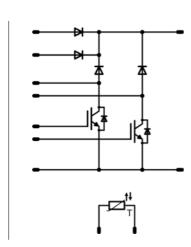
Part-No	V oltage (V)	Current [A]	Technology	Comments
V23990-P623-L82-PM	650	50	IGBT H5	IGBT H5 with 50 A Si diodes, for 110 V grid
V23990-P629-L48-PM	1200	40	IGBT4 HS	SiC diode (optimized current rating)
V23990-P629-L49-PM	1200	40	IGBT4 HS	SiC diode (optimized current rating)
V23990-P629-L59-PM	1200	40	IGBT4 HS	50 A Si diodes
V23990-P629-L63-PM	1200	40	IGBT Ufast	SiC diodes
V23990-P629-F72-PM	1200	40	IGBT Ufast	30 A STEALTH™ II diode, improved reverse protection
V23990-P629-F73-PM	1200	40	IGBT Ufast	50 A Si diode, improved reverse protection
V23QQM_D62Q_I QQ_DM	1200	ДΩ	ICRT Lifact	higher rated current SiC diades improved Pth (AIN)

BOOSTER

Part-No	Voltage (V)	Current (A)	Technology	Comments
V23990-P623-L82-PM	650	50	IGBT H5	IGBT H5 with 50 A Si diodes, for 110 V grid
V23990-P629-I 48-PM	1200	40	IGBT4 HS	SiC diode (optimized current rating)
V23990-P629-L49-PM	1200	40	IGBT4 HS	SiC diode (optimized current rating)
V23990-P629-L59-PM	1200	40	IGBT4 HS	50 A Si diodes
V23990-P629-L63-PM	1200	40	IGBT Ufast	SiC diodes
V23990-P629-F72-PM	1200	40	IGBT Ufast	30 A STEALTH™ II diode, improved reverse protection
V23990-P629-F73-PM	1200	40	IGBT Ufast	50 A Si diode, improved reverse protection
V23990-P629-L99-PM	1200	40	IGBT Ufast	higher rated current SiC diodes, improved Rth (AlN)
V23990-P629-I 43-PM	1200	50	IGBT4 HS	SiC dindes

flowB00ST	0	dual
-----------	---	------

Facts


- / High efficient booster high-speed IGBT
- / Bypass diode
- / Dedicated for solar applications
- / Rated current is for each leg

Housing

- / flow 0 12 mm / flow 0 17 mm
- www.vincotech.com/flowB00ST-0-dual

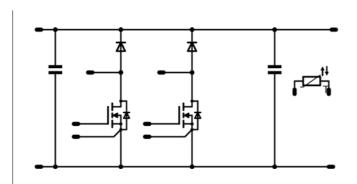
Applications

/ POWER SUPPLY / SOLAR INVERTERS

flow2xB00ST 0

Facts

- / 2 channel BOOST topology
- / SiC-Power MOSFET's and Schottky diodes
- / IGBT H5 and Stealth™diode
- / Very high switching frequency
- Very low inductance with integrated
- / Temperature sensor
- / Rated current is for each leg


Housing

/ flow 0 12 mm

www.vincotech.com/flow2xB00ST-0

Applications

/ POWER SUPPLY / SOLAR INVERTERS

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ06B2A040MF01-M575L28PM	600	40	MOSFET	
10-FZ07B2A030SM02-M575L48	650	30	IGBT H5	

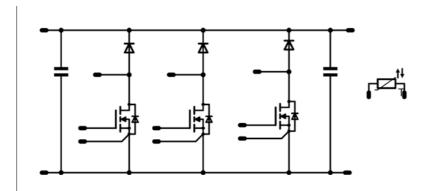
BOOSTER

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ063BA040MF-M575L08	600	44	MOSFET	
10-FZ073BA030SM02-M575L38	650	30	IGBT H5	

flow3xB00ST 0

Facts

- / 3 channel BOOST topology
- / SiC-Power MOSFET's and Schottky diodes
- / IGBT H5 and Stealth™ diode
- / Very high switching frequency
- Very low inductance with integrated DC-capacitors
- / Temperature sensor
- / Rated current is for each leg


Housing

/ flow 0 12 mm

www.vincotech.com/flow3xB00ST-0

Applications

/ POWER SUPPLY / SOLAR INVERTERS

flowBOOST 0 SiC

Facts

- / High efficient BOOSTER
- / SiC power MOSFET 2nd gen
- / Extremely fast switching without "tail" current
- / Rated current is for each leg

Housing

/ flow 0 12 mm

www.vincotech.com/flowB00ST-0-SiC

Applications

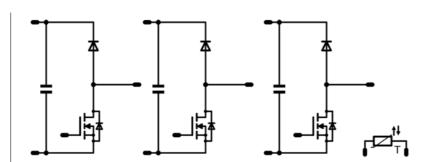
/ POWER SUPPLY / SOLAR INVERTERS

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PZ12B2A040ME01-M330L63Y	1200	35	SIC MOSFET	SiC MOSFET 2^{nd} gen and SiC diode from Wolfspeed $^{\mbox{\scriptsize M}}$
10-PZ12B2A040MR01-M330L68Y	1200	35	SIC MOSFET	SiC MOSFET 2 nd gen and SiC diode from ROHM™

flow3xB00ST 0 SiC

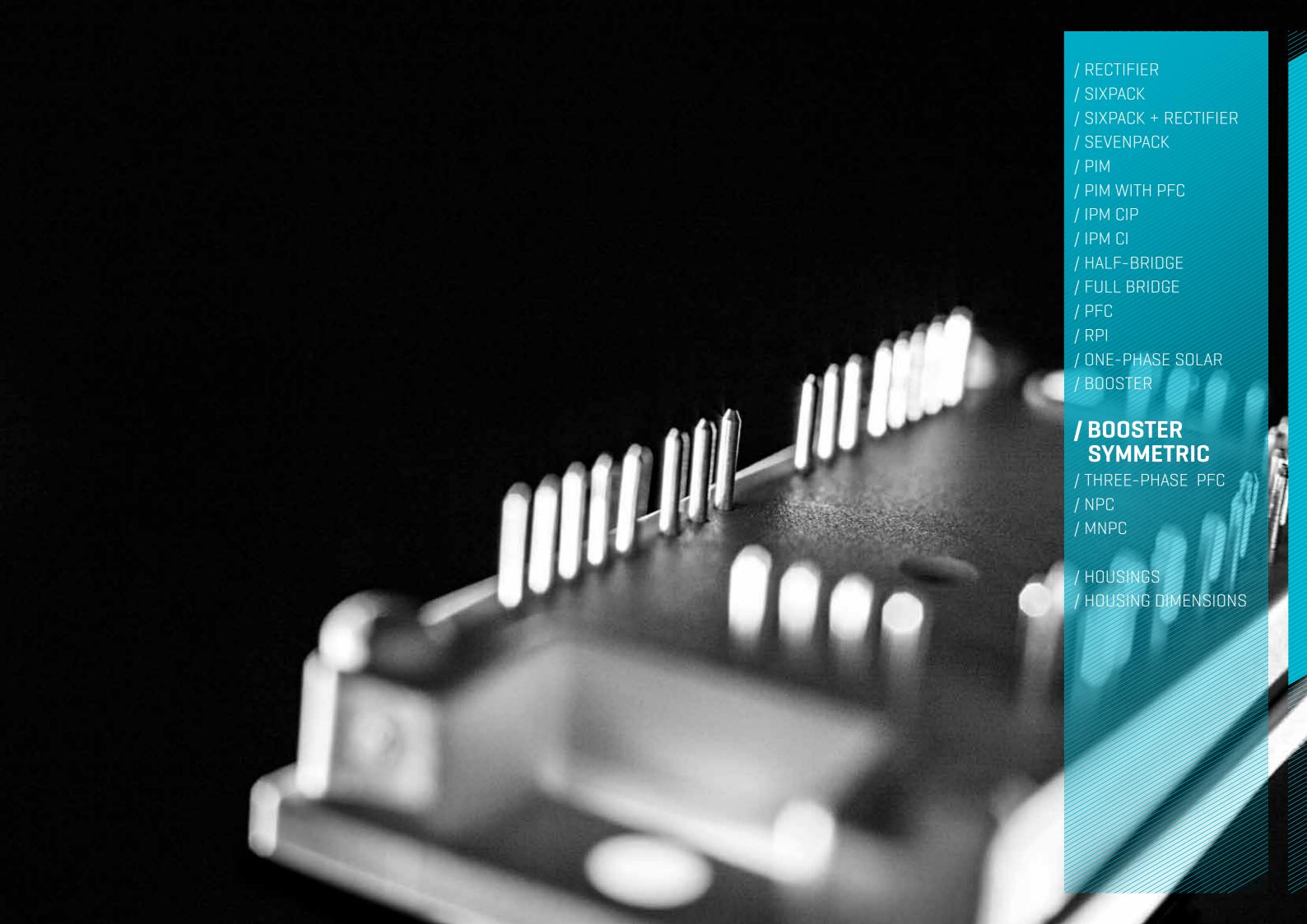
Facts

- / 3 channel BOOST topology SiC-Power MOSFET's and Schottky diodes
- / Switching frequency > 100 kHz
- / Very low inductance with integrated DC-capacitors
- / Temperature sensor
- / Rated current is for each leg


Housing

/ flow 0 12 mm

www.vincotech.com/flow3xB00ST-0-SiC


Applications

/ POWER SUPPLY / SOLAR INVERTERS

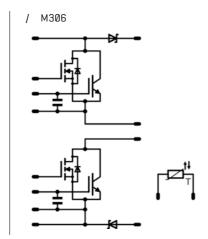
BOOSTER

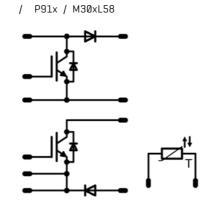
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PZ123BA080ME-M909L18Y	1200	35	SIC MOSFET	SiC diode from Wolfspeed™
10-PZ123BA080MR-M909L28Y	1200	35	SIC MOSFET	SiC diode from ROHM™

flowBOOST 0 symmetric

Facts

- / High efficiency symmetric boost
- / Dedicated designs for solar and UPS applications
- / Ultra high switching frequency
- / Use together with flow NPC 0
- / Rated current is for each leg


Housing


/ flow 0 12 mm

www.vincotech.com/ flowB00ST-0-symmetric

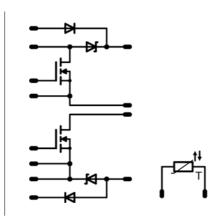
Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

flowBOOST 0 s+b

Facts

- / High efficiency symmetric boost: CoolMOS™ C6 MOSFET
- Dedicated designs for solar and UPS applications
- / Ultra-high switching frequency
- / Use together with flow NPC 0
- / Rated current is for each leg


Housing

/ flow 0 12 mm

www.vincotech.com/ flowB00ST-0-sym-w-bp-d

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

BOOSTER SYMMETRIC

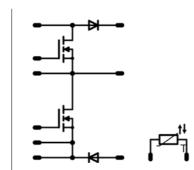
Voltage (V)	Current [A]	Technology	Comments
600	84	Parallel	parallel switch + SiC diode
600	110	Parallel	parallel switch + SiC diode
650	30	IGBT H5	(NEW)
650	75	IGBT H5	
650	100	IGBT H5	
	600 600 650	600 84 600 110 650 30 650 75	600 84 Parallel 600 110 Parallel 650 30 IGBT H5 650 75 IGBT H5

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PZ06NBA041FS-P915L68Y	600	40	MOSFET	
10-FZ06NBA041FS01-P915L78	600	40	MOSFET	SiC diodes

flowB00ST 1 symmetric

Facts

- / High efficiency symmetric boost
- / Dedicated designs for solar and UPS applications
- / Ultra-high switching frequency
- Rated current is for each leg


Housing

/ flow 1 17 mm

www.vincotech.com/ flowB00ST-1-symmetric

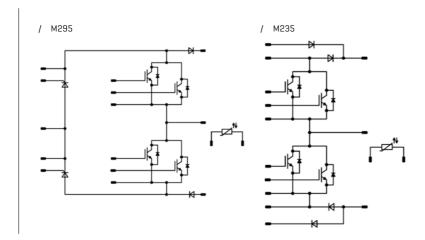
Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

flowBOOST 2 symmetric

Facts

- / High efficiency symmetric boost
- / Dedicated designs for solar and UPS applications
- High switching frequency
- / Use together with flow NPC 2
- / Rated current is for each leg

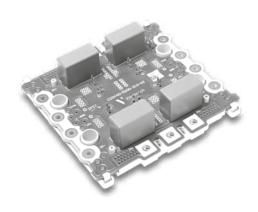

Housing

/ flow 2 17 mm

www.vincotech.com/ flowB00ST-2-symmetric

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS



BOOSTER SYMMETRIC

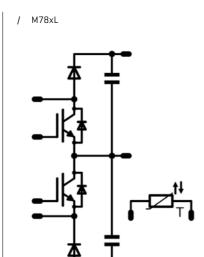
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-F106BIB020FK-M285L	600	80	MOSFET	

Part-No	Voltage (V)	Current [A]	Technology	Comments
30-F206NBA200SG-M235L25	600	200	IGBT3 HS	bypass diode
30-F206NBA200SA-M295L33	600	200	IGBT3	Thyristor for UPS

VINcoBOOST X4 symmetric

Facts

- / High efficiency symmetric boost
- / Dedicated designs for solar and UPS applications
- / Symmetric boost
- Integrated DC-link capacitor
- Low DC inductance (< 5 nH)
- / Transient interface for optional regeneration of switching losses
- / Temperature sensor


Housing

/ VINco X4

www.vincotech.com/ VINcoBOOST-X4-symc

Applications

/ SOLAR INVERTERS / UPS

BOOSTER SYMMETRIC

Part-No	Voltage (V)	Current [A]	Technology	Comments
70-W206NBA400SA-M786L	600	400	IGBT3	
70-W206NBA600SA-M788L	600	600	IGBT3	

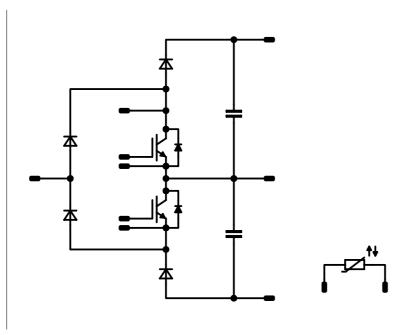
THREE-PHASE PFC

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ071SA050SM02-L524L18	650	50	IGBT H5	
10-FZ071SA075SM02-L525L18	650	75	IGBT H5	
10-FZ071SA100SM02-L526L18	650	100	IGBT H5	

flowSPFC 0

Facts

- / Ultra fast IGBT and boost diodes / Integrated capacitor
- / Temperature sensor


Housing

/ flow 0 12 mm

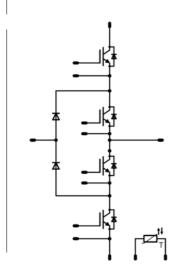
www.vincotech.com/flowSPFC-0

Applications / UPS

flowNPC 0 IGBT

Facts

- / IGBT3 High efficiency three-level topology
- / Dedicated designs for solar and UPS applications
- / LVRT capability


Housing

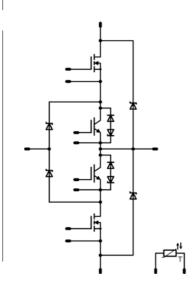
- / flow 0 12 mm
- / flow 0 17 mm

www.vincotech.com/flowNPC-0-IGBT

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

flowNPC 0 MOS


- / High efficiency three-level topology
- / Dedicated designs for solar and UPS applications
- / Ultra-high switching frequency
- / LVRT capability
- / Reactive power

Housing

www.vincotech.com/flowNPC-0-MOS

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

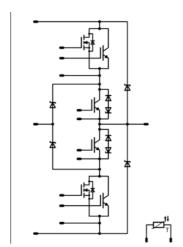
/ flow 0 12 mm

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ06NIA030SA-P924F33	600	30	IGBT3	
10-FZ06NIA050SA-P925F33	600	50	IGBT3	
10-FZ06NIA075SA-P926F33	600	75	IGBT3	
10-F007NIA030SM-P965F39	650	30	IGBT H5	high switching frequency, IGBT H5 + STEALTH™ diode
10-F007NIA030SM01-P965F49	650	30	IGBT H5	high switching frequency, IGBT H5 + SiC diode
10-F007NRA050SG-P966F09	650	50	IGBT3	high-speedIGBT3 high-speed + 1200 V IGBT,
				in neutral path + SiC diode
10-FZ07NIA060SM-P926F43	650	60	IGBT H5	all switches IGBT H5 outer switch with ufast diode
10-FZ06NRA060FU-P967F08	650	60	IGBT	IGBT Ufast + IGBT3, STEALTH™
10-FZ06NRA075FU-P969F08	650	75	IGBT	IGBT Ufast + IGBT3, STEALTH™
10-FZ06NRA075FU-P969F08	650	75	IGBT	IGBT Ufast + IGBT3, STEALTH™

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ06NRA045FH01-P965F10	600	30	MOSFET	CoolMOS™ CP + IGBT3, STEALTH™ II diodes
10-FZ06NRA045FH-P965F	600	30	MOSFET	CoolMOS™ CP + IGBT3, SiC diodes
10-FZ06NRA041FS03-P965F78	600	30	MOSFET	CoolMOS™ C6 + IGBT3, STEALTH™ II diode
10-FZ06NRA041FS02-P965F68	600	30	MOSFET	CoolMOS™ C6 + IGBT3, SiC diode
10-FZ06NIA045FH-P925F	600	30	MOSFET	CoolMOS™ CP
10-FZ06NIA045FH01-P925F10	600	30	MOSFET	CoolMOS™ CP

146 147

flowNPC 0 parallel


Facts

- / High efficiency three-level topology
- / Dedicated designs for solar and UPS applications
- / Ultra-high switching frequency

Housing

/ flow 0 12 mm

www.vincotech.com/flowNPC-0-parallel

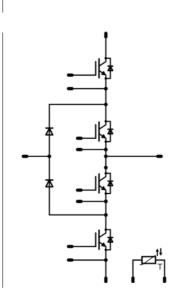
Applications

/ POWER SUPPLY / SOLAR INVERTERS

flowNPC 1

Facts

- / High efficient three-level topology
- / IGBT (600 V/650 V) technology for low conduction losses


Housing

- / flow 1 12 mm
- / flow 1 17 mm

www.vincotech.com/flowNPC-1

Applications

/ POWER SUPPLY / SOLAR INVERTERS

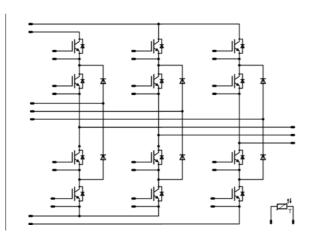
Part-No Voltage (V) Current [A] Technology Comments 10-FZ06NPA045FP-P967F CoolMOS™ + IGBT, IGBT3, SiC diodes 600 50 Parallel 10-FZ06NPA045FP01-P967F10 600 50 Parallel CoolMOS™ + IGBT, IGBT3, Stealth 10-FZ06NRA069FP02-P967F68 75 Parallel C6 CoolMOS™ + IGBT, IGBT3, SiC diodes 600 75 C6 CoolMOS™ + IGBT, IGBT3, STEALTH™ II 10-FZ06NRA069FP03-P967F78 600 Parallel 600 75 10-FZ06NPA070FP-P969F Parallel 10-FZ06NPA070FP01-P969F10 600 75 Parallel 10-FZ06NRA084FP03-P969F78 Parallel C6 CoolMOS™ + IGBT, IGBT3, STEALTH™ & trade II 600 100 10-FZ06NRA084FP02-P969F68 600 100 Parallel C6 CoolMOS™ + IGBT, IGBT3, SiC diodes

Part-No	Voltage (V)	Current (A)	Technology	Comments
10-F106NIA100SA-M135F	600	100	IGBT3	
10-F106NIA150SA-M136F	600	150	IGBT3	
10-PY07NIB080SM03-L095F03Y	650	80	IGBT H5	4 quadrant operation, very high speed
10-F107NIB150SG06-M136F39	650	150	IGBT3 HS	IGBT3 high-speed + fast Si diodes, improved R _{th} (ALN)
10-FY07NPA150SM01-L364F08	650	150	IGBT H5	IGBT H5 and IGBT L5 and Stealth™ + capacitors;
				for solar
10-FY07NPA150SM02-L365F08	650	150	IGBT H5	4 quadrant operation, very high speed
				+ capacitors; for ESS
10-FY07NPA200SM02-L366F08	650	200	IGBT H5	4 quadrant operation, very high speed
				+ capacitors; for ESS

flow3xNPC 1

Facts

- / High efficient three-phase
- / Three-phase application in a single housing
- / Dedicated designs for solar and UPS application


Housing

/ flow 1 12 mm

www.vincotech.com/flow3xNPC-1

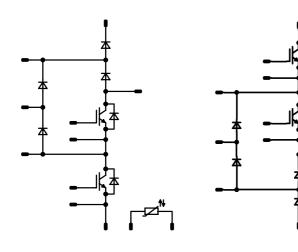
Applications

/ POWER SUPPLY

flowNPC 1 split

Facts

- / High DC-Link voltages
- / High efficiency with high speed IGBT
- / 4 quadrant operation
- / Fast switching frequencies
- / Integrated temperature sensor


Housing

/ flow 1 12 mm

www.vincotech.com/flowNPC-1-split

Applications

/ POWER SUPPLY

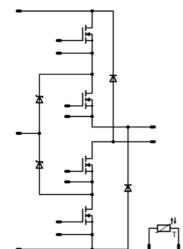
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-PY07N3A015SM-M892F08Y	650	15	IGBT H5	3xNPC, IGBT H5 + Rapid™ diode
10-PY07N3A030SM-M894F08Y	650	30	IGBT H5	3xNPC, IGBT H5 + Rapid™ diode
10-PY07N3A050SM-M896F04Y	650	50	IGBT H5	3xNPC, IGBT H5 + IGBT L5 +Rapid™ diode

Part-No	Voltage [V]	Current [A]	Technology	Comments
10-FY24NIB150SH01-L728F08	2400	150	IGBT4 HS	
10-FY24NIC150SH01-L738F08	2400	150	IGBT4 HS	

flowNPC 1 MOS

Facts

- / Ultra-high efficient NPC with pure MOSFET switches SiC diodes
- / Split output eliminates x-conduction and enables reactive power
- / Ultra fast switching
- / Low inductance layout


Housing

/ flow 1 12 mm

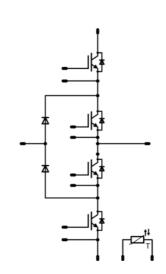
www.vincotech.com/flowNPC-1-MOS

Applications

/ POWER SUPPLY / SOLAR INVERTERS

flowNPC 2

Facts


- / High efficient three-level topology
- / IGBT3 (600 V) technology for low saturation
- / Low inductance layout
- / For solar, UPS and motor drives
- High power flow 2 housing

Housing

/ flow 2 17 mm

www.vincotech.com/flowNPC-2

Applications

/ POWER SUPPLY / SOLAR INVERTERS

Part-No	Voltage (V)	Current [A]	Technology	Comments
30-F206NIA200SA-M105F	600	200	IGBT3	
30-F206NIA200SG-M105F25	600	200	IGBT3 HS	IGBT3 high-speed
30-F206NIA300SA-M106F	600	300	IGBT3	

152 153

Part-No

10-PY06NRA041FS-M413FY

10-PY06NRA021FS-M410FY

Voltage (V)

600

600

Current [A]

30

60

Technology

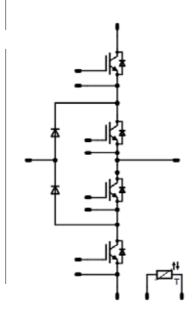
MOSFET

MOSFET

Comments

C6 + SiC diode

C6 + SiC diode


Part-No Voltage [V] Current [A] Technology Comments 70-W224NIA400SH-M400P 2400 400 IGBT4 HS

VINcoNPC X4

Facts

- / 2400 V NPC-topology
- / Low commutation inductance
- / High power screw interface
- / Optional assymetrical inductance technology

Housing

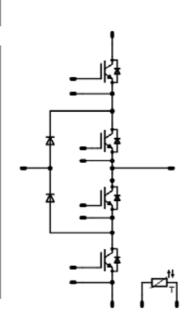
/ VINco X4 [w/o capacitors] www.vincotech.com/VINcoNPC X4

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

VINcoNPC X8

Facts


- / 2400 V NPC-topology
- / Low commutation inductance
- / High power screw interface
- / Optional asymmetrical inductance technology

Applications

Housing

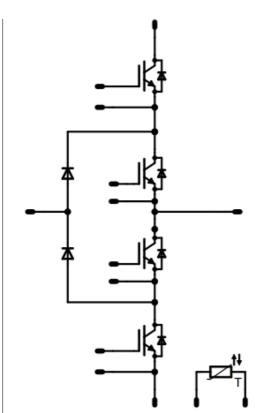

/ POWER SUPPLY / SOLAR INVERTERS / UPS

/ VINco X8 [w/o capacitors]
www.vincotech.com/VINcoNPC X8

Part-No	Voltage (V)	Current [A]	Technology	Comments
70-W424NIA800SH-M800F	2400	800	IGBT4 HS	

VINcoNPC X12

Facts


- / 2400 V NPC-topology (2x 1200 V)
- / High power screw interface
- Snubber diode for optional asymmetrical inductance
- High speed buck IGBT's
- / Temperature sensor

Housing

/ VINco X12 (w/o capacitors)

www.vincotech.com/VINcoNPC X12

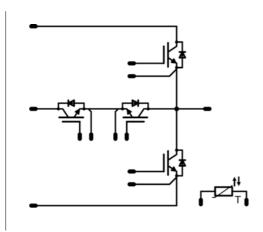
Applications / POWER SUPPLY / SOLAR INVERTERS / UPS

NPC

Part-No	Voltage (V)	Current [A]	Technology	Comments
70-W624N34A1K2SC-L400FP	2400	1200	IGBT4 HS	IGBT4 + IGBT4 HS
70-W624N3A1K2SC01-L400FP10	2400	1200	IGBT4	

MNPC

Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FZ07NMA100SM-M265F58	650	100	IGBT H5	for 110 V grid
				-
10-FZ12NMA040SH-M267F	1200	40	IGBT4 HS	
10-FZ12NMA080NS03-M260F38	1200	80	IGBT TFS II	
10-PZ12NMA080NS03-M260F38Y	1200	80	IGBT TFS II	
10-PZ12NMA080SH23-M260F03Y	1200	80	IGBT4 HS	Ultra fast diodes
10-F012NME080SH-M910F09	1200	80	IGBT4 HS	Similar to M260F03 but with P96x NPC pinout


/ flow 0 12 mm / flow 0 17 mm

www.vincotech.com/flowMNPC-0

Applications

Housing

/ POWER SUPPLY / SOLAR INVERTERS / UPS

flowMNPC 0 SiC

flowMNPC 0

Facts

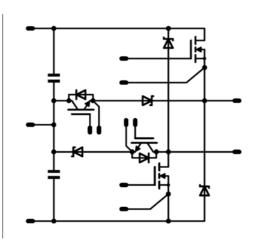
Facts

/ High efficiency three-level

/ Dedicated designs for solar and UPS applications

Compatible with flow BOOST 0

- / Ultra high efficient SiC power
- / MOSFET 2nd gen, SiC Power and Schottky diode latest gen
- / Split output eliminates x-conduction
- / Extremely fast switching


Housing

/ flow 0 12 mm

www.vincotech.com/flowMNPC-0-SIC

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

Part-No	${\bf Voltage}~[{\tt V}]$	Current [A]	Technology	Comments
10-PZ12NMA027ME-M340F63Y	1200	100	SIC MOSFET	2 nd gen SiC MOSFET and SiC diode from Wolfspeed™
10-PZ12NMA027MR-M340F68Y	1200	100	SIC MOSFET	2 nd gen SiC MOSFET and SiC diode from ROHM™

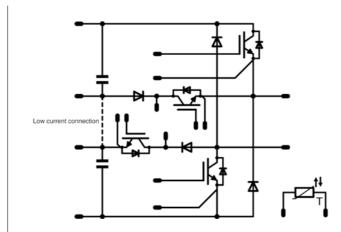
improved LVRT

Part-No Voltage (V) Current [A] Technology Comments 10-FY12NMA080SH-M427F 1200 IGBT4 HS 10-FY12NMA160SH-M420F IGBT4 HS 1200 160 10-FY12NMA160SH01-M820F18 1200 160 IGBT4 HS

flowMNPC 1

Facts

- / High efficient three-level
- / Split output eliminates x-conduction
- Dedicated designs for solar and UPS
- High switching frequency
- / Available with Press-fit pins
- Reactive power capability + LVRT


Housing

/ flow 1 12 mm

www.vincotech.com/flowMNPC-1

Applications

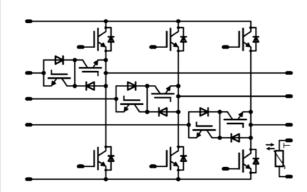
/ POWER SUPPLY / SOLAR INVERTERS

flow3xMNPC 1

Facts

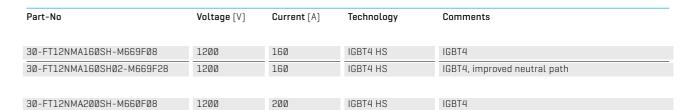
- High efficient three-phase mixed voltage NPC topology
- Three-phase application in a single housing
- Dedicated designs for solar and UPS applications
- Available with Press-fit pins

Housing


/ flow 1 12 mm (xx8)

/ flow 1 17 mm (xx9)

www.vincotech.com/flow3xMNPC-1


Applications

/ POWER SUPPLY / SOLAR INVERTERS

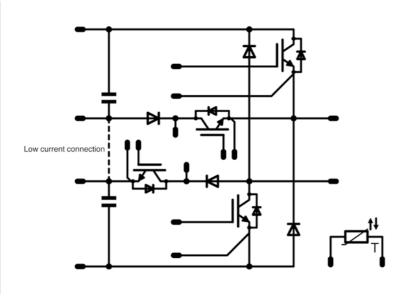
Part-No	Voltage (V)	Current [A]	Technology	Comments
10-FY12M3A025SH-M746F08	1200	25	IGBT4 HS	3x MNPC
10-F112M3A025SH-M746F09	1200	25	IGBT4 HS	3x MNPC
10-FY12M3A040SH-M749F08	1200	40	IGBT4 HS	3x MNPC
10-F112M3A040SH-M749F09	1200	40	IGBT4 HS	3x MNPC

MNPC

flowMNPC 2

Facts

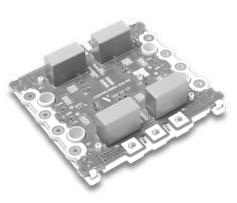
- / High efficient three-level
- / Split output eliminates x-conduction
- / Dedicated designs for solar and UPS applications
- / High switching frequency


Housing

/ flow 2 13 mm

www.vincotech.com/flowMNPC-2

Applications


/ POWER SUPPLY / SOLAR INVERTERS / UPS

Part-No	Voltage (V)	Current [A]	Technology	Comments
70-W212NMA300SC-M208P	1200	300	IGBT4	
70-W212NMA400SC-M209P	1200	400	IGBT4	
70-W212NMC400SH01-M709P	1200	400	IGBT4 HS	
70-W212NMA400NB02-M209P62	1200	400	M6.1	
70-W212NMA600SC-M200P	1200	600	IGBT4	
70-W212NMC600SH01-M700P	1200	600	IGBT4 HS	
70-W212NMA600NB04-M200P60	1200	600	M6.1	
70-W212NMA600NB02-M200P62	1200	600	M6.1	

MNPC

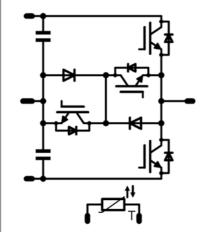
VINcoM	INP	C	X	4
--------	-----	---	---	---

Facts

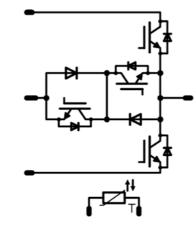
- / High efficient mixed voltage NPC topology
- / Low stray inductance with integrated DC snubber capacitors
- Screw terminals
- Dedicated for high efficient solar and UPS applications
- Low inductive interface

Housing

/ VINcoMNPC X4


www.vincotech.com/VINcoMNPC-X4

Applications

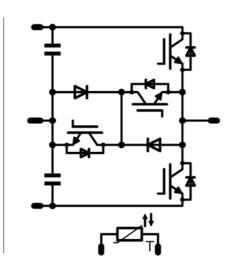

/ POWER SUPPLY / SOLAR INVERTERS / UPS

/ M20xP62

VINcoMNPC X12

Facts

- / High efficient mixed voltage NPC topology
- / Low stray inductance with integrated DC snubber capacitors
- / Low inductive interface


Housing

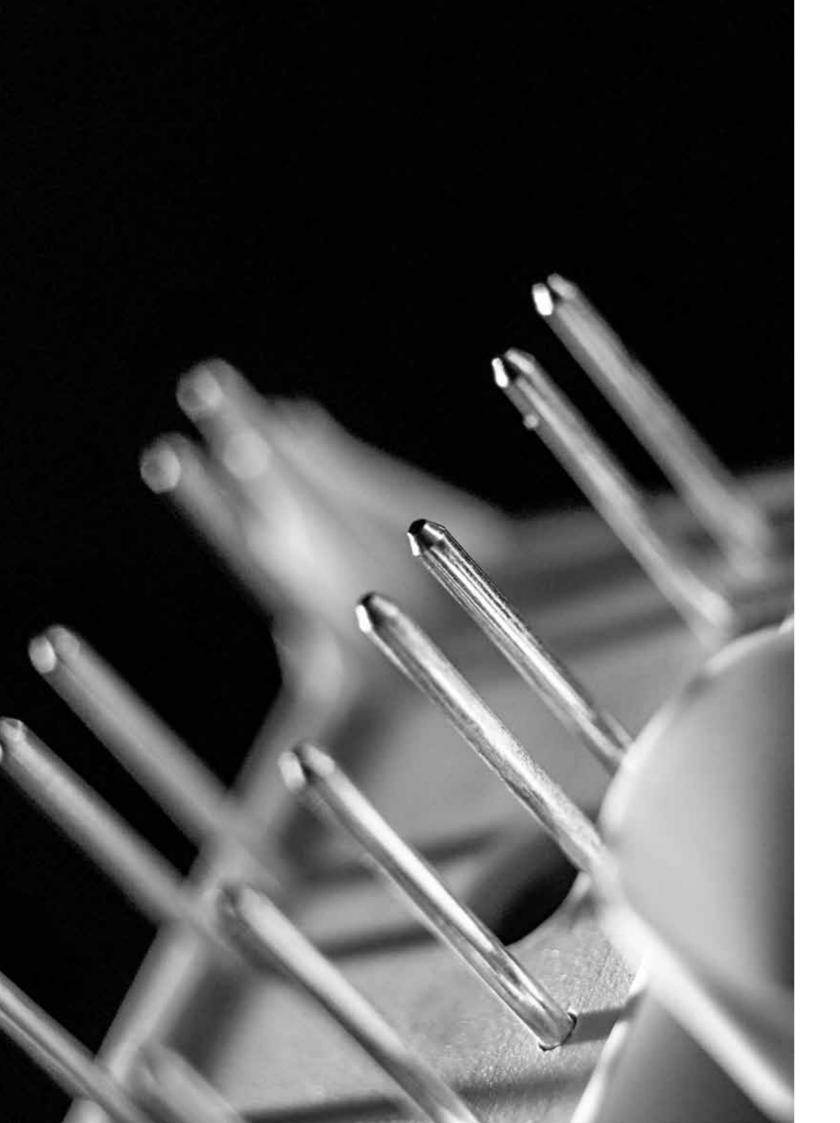
/ VINcoMNPC X12

www.vincotech.com/VINcoMNPC-x12

Applications

/ POWER SUPPLY / SOLAR INVERTERS / UPS

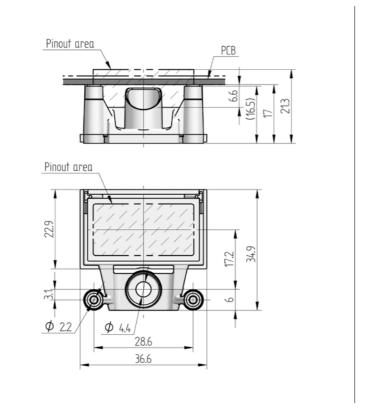
Part-No	Voltage (V)	Current [A]	Technology	Comments
70-W612M3A1K8SC02-L300FP70	1200	1800	IGBT4	improved NTC accuracy


HOUSING ITEMS

flow 0B	flow 0	flow 1	flow 1B	flow 2	flow90 0	flow90 1	VINco X
solder	solder Press-fit	solder Press-fit	solder Press-fit	solder Press-fit	solder	solder	screw
screw	2-clip 4-clip	2-clip screw	screw	screw	optional 2-clip	2-clip	screw
0	0	0	0	•	0	0	•
17	12 / 17	12 / 17	17	13 / 17	38	35	14.75 - 17.15*
	solder	solder solder Press-fit screw 2-clip 4-clip	solder solder Press-fit Press-fit screw 2-clip 2-clip 4-clip screw	solder solder Press-fit Press-fit Press-fit screw 2-clip 2-clip screw 4-clip screw	solder solder press-fit Pr	solder solder Press-fit Pr	solder solder Press-fit Pr

Housing	MiniSKiiP® 0	MiniSKiiP® 1	MiniSKiiP® 2	MiniSKiiP® 3
Contacts	spring	spring	spring	spring
Baseplate				
Height (mm] 16	16	16	16

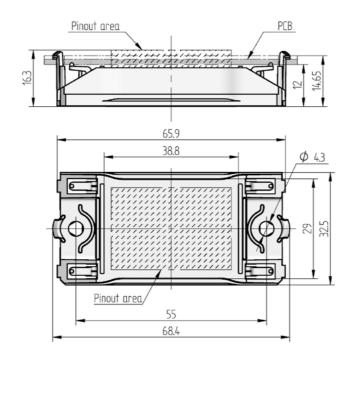
^{*} Depending on the power • Yes □ No


www.vincotech.com/housings

flow 0B 17 mm

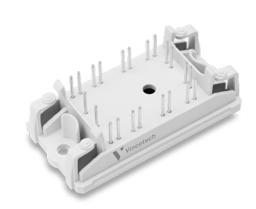

Housing dimensions: Height: 17 mm Lenght: 35 mm Width: 37 mm

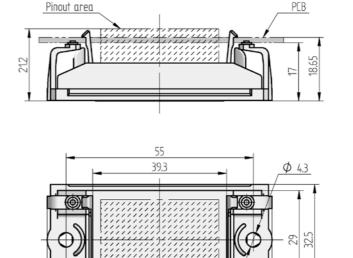
flow 0 17 mm


Housing dimensions: Height: 17 mm Lenght: 66 mm Width: 33 mm

flow 0 12 mm

Housing dimensions: Height: 12 mm Lenght: 66 mm Width: 33 mm





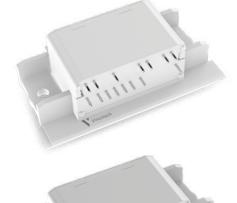
flow 0 17 mm 4-clip

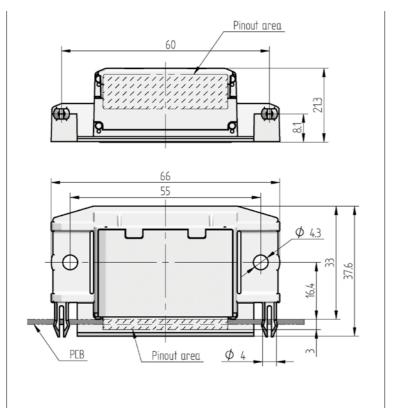
Φ 4.3

Housing dimensions: Height: 17 mm Lenght: 66 mm Width: 33 mm

Pinout area/

65.9 37.8


68.4

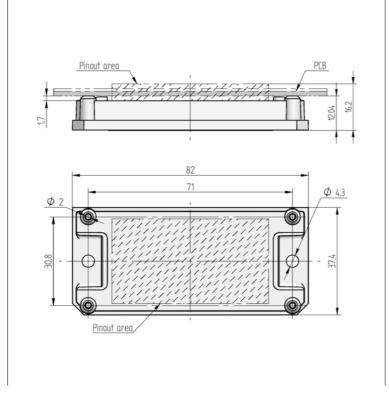

Pinout area

Pinout area

flow900

Housing dimensions: Height: 38 mm Width: 66 mm Depth: 21 mm

flow 1 17 mm


Housing dimensions: Height: 17 mm Lenght: 82 mm Width: 38 mm

flow 1 12 mm

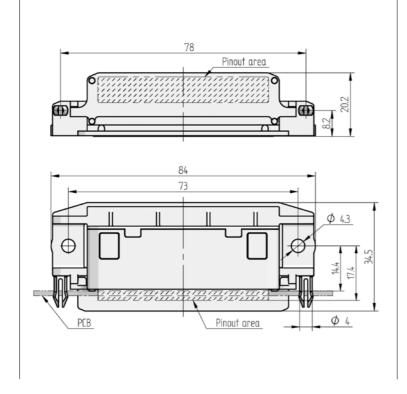
Housing dimensions: Height: 12 mm Lenght: 82 mm Width: 38 mm

Pinout area/

Pinout area/

flow 1B

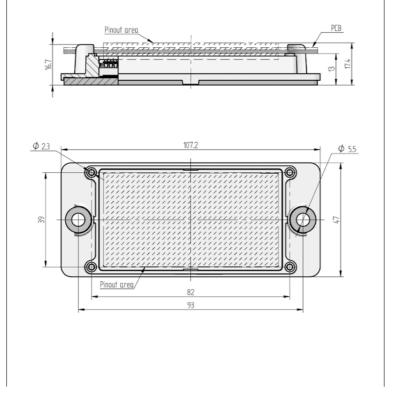
Housing dimensions: Height: 17 mm Lenght: 72 mm Width: 36 mm



Ø 4.3

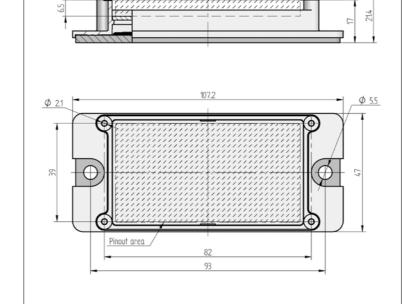
flow90 1

Housing dimensions: Height: 35 mm Width: 84 mm Depth: 21 mm



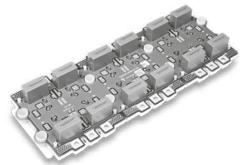
flow 2 13 mm

Housing dimensions: Height: 13 mm Lenght: 107 mm Width: 47 mm



flow 2 17 mm

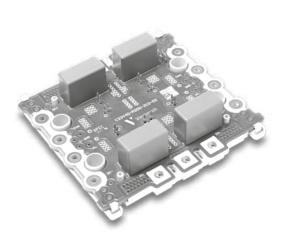
Housing dimensions: Height: 17 mm Lenght: 107 mm Width: 47 mm

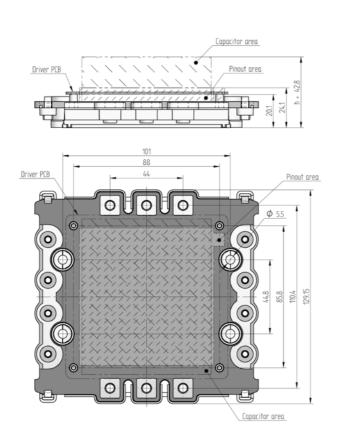


Pinout area

VINco X12

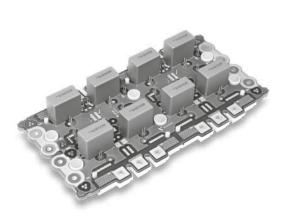
Housing dimensions: Height: 14.75 - 17.15 mm* Lenght: 317 mm Width: 135 mm



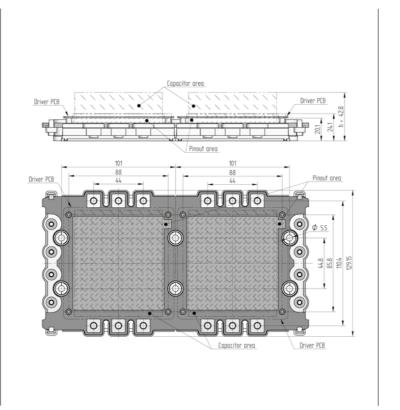

* Depending on the power

VINco X4

Housing dimensions: Height: 14.75 - 17.15 mm* Lenght: 105 mm Width: 135 mm



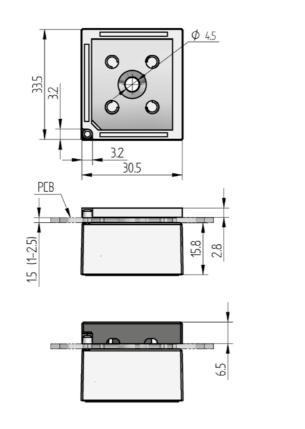
* Depending on the power



VINco X8

Housing dimensions: Height: 14.75 - 17.15 mm* Lenght: 236 mm Width: 135 mm

* Depending on the power


178 179

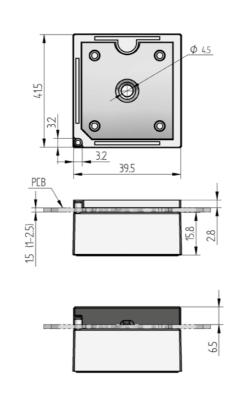
000

MiniSKiiP® 0

Housing dimensions: Height: 16 mm Lenght: 34 mm Width: 31 mm

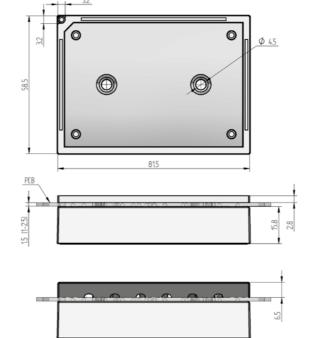
MiniSKiiP® 2

Housing dimensions: Height: 16 mm Lenght: 59 mm Width: 52 mm



MiniSKiiP® 1

Housing dimensions: Height: 16 mm


Lenght: 42 mm Width: 40 mm

MiniSKiiP® 3

Housing dimensions: Height: 16 mm Lenght: 82 mm Width: 59 mm

Ø 4.5

The information provided herein is believed to be reliable at press time. Vincotech assumes no responsibility for inaccuracies or omissions. Vincotech assumes no responsibility for the use of this information, and all such information shall be entirely at the users own risk.

Prices and specifications are subject to change without notice. Vincotech does not authorize or warrant any of its products for use in life-support devices and / or systems.

CoolMOS is a trademark of Infineon Technologies AG.

Rapid diode is a trademark of Infineon Technologies AG.

Wolfspeed is a trademark.

ROHM is a trademark.

Fairchild is a trademark.

STEALTH is a trademark of Fairchild Semiconductors.

SEMIKRON is a trademark.

 $\mbox{MiniSKiiP is a trademark of SEMIKRON Elektronik GmbH \& Co. KG.} \label{eq:miniSKiiP}$

Vincotech is a trademark.

flowPIM is a trademark of Vincotech Holdings S.à.r.l. Wacker is a trademark of Wacker Chemie AG. UL and the UL logo are trademarks of UL LLC $\hbox{\tt @}$

YOUR CONTACT

Description Naming System

ABBREVIATIONS

AC	Alternating Current
ALN	Aluminium Nitride
Al ₂ 0 ₃	Aluminium Oxide
AMNPC	Advanced MNPC
BRC	Brake Chopper
CIB	Converter Inverter Break
DC	Direct Current
DCB	Direct Copper Bonding
EMC	Electromagnetic Compatibility
FET	Field-Effect Transistor
FWD	Free Wheeling Diode
IGBT	Insulated Gate Bipolar Transistor
IPM	Intelligent Power Module
JFET	Junction Field-Effect Transistor
LVRT	Low Voltage Right Through
MNPC	Mixed voltage NPC
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor
MPP	Maximum Power Point
NPC	Neutral Point Clamp
NTC	Negative Temperature Coefficient
PCM	Phase-change Material
PFC	Power Factor Correction
PIM	Power Integrated Module
PTC	Positive Temperature Coefficient
REACH	Registration, Evaluation, Athorization & Restriction of Chemicals (EU 1907/2006)
RoHS	Restriction of certain Hazardous Substances (EU 2011/65)
R _{DS(on)}	On resistance
R _{th}	Thermal Resistance
SCR	Silicon Controlled Rectifier (thyristor)
Si	Silicon
SiC	Silicon Carbide
SMPS	Switching Mode Power Supplies
TIM	Thermal Interface Material
Tj	Junction Temperature
UPS	Uninterruptable Power Supply
ZVS	Zero Voltage Switching

VERSION 1

This ordering code is identical with the product name shown here. It remains valid for all products released before mid-2009 and subsequent releases within product families established before 2009.

Leading Number V23990: Power modules V23109: Relays S30814: Hybrids	Product Identification First two digits: product Last digit: module identi Modules are listed from highest power (e.g. 600	fier lowest to	Part Number Ending
Product Classification P: flow power modules K: MiniSKiiP® power m S: Relays Q: Hybrids		Option Code Different housings Optional DCB material Optional parts (e.g. brake) Y as last letter: Press-fit option	Option Code 2 (optional) Thermal Interface Material: MiniSKiiP® options

VERSION 2

PY: flow 1 12 mm PB: flow 1B P2: flow 2 17 mm PT: flow 2 12 mm TY: flow 1 12 mm 2-clip

Version 2 introduces a new name and ordering code for products released after mid-2009.

* Examples

/ The new product name describes the module's characteristics.

/ The new ordering code extends the product's name. It is listed in the product data sheet.

	Voltage	Pinout		
Technology Group	06: 600 V	Modules with same	Current/R _{DS[on]}	Options
For UL notification	07: 650 V	topology, same housing,	045 (IGBT): 45 A	Alternative parts
	09: 900 V	and same pinout have	045 (MOS): 45 mΩ	Optional substrate material
	12: 1200 V	same character		Internal Identifier
	17: 1700 V			
1 .		1	1	1

	17: 1700 V Same char	acter [Interi
0 - PZ 0	6 NR A 04	1 <mark>1 FS</mark> 02 - F	P965F68
] []	7
Housing Solder Pins	Screw Terminals	Topology*	Chip Technology*
FZ: flow 0 12 mm	T2: flowSCREW 2	2P: Half-Bridge	FB: IGBT2 High-Speed
F0: flow 0 17 mm	T3: flowSCREW 3	2T: Rectifier + PFC	FH: CoolMOS™ CP
F1: flow 1 17 mm	W2: flowSCREW 4w	2U: Rectifier + P-Switch PFC	FI: CoolMOS™ CFD
FY: flow 1 12 mm	W4: 2xflowSCREW 4w	BI: Boost + inverter	FP: Parallel Switch
FB: flow 1B	W6: 3xflowSCREW 4w	IP: IPM w/o brake, with PFC	FS: CoolMOS™ C6
F2: <i>flow</i> 2 17 mm		NB: Symmetric boost	FU: Fieldstop IGBT
FT: flow 2 12 mm	MiniSKiiP®	NI: NPC	MC: MOSFET + SiC
R1: flow90 1	M0: MiniSKiiP® 0	NP: NPC parallel switch	MF: MOSFET + Fast Diod
S2: flowSCREW 2	M1: MiniSKiiP® 1	NR: NPC reactive power	SA: IGBT3 Standard
S3: flowSCREW 3	M2: MiniSKiiP® 2	NM: MNPC	SB: IGBT3 Low Loss
0B: flow 0 B	M3: MiniSKiiP® 3	RI: Rectifier + inverter	SC: IGBT4 Low Power
R0: flow90 0		PM: PIM (CIB)	SG: IGBT3 High-Speed
PZ: flow 0 w/o clip		PN: PIM w/o brake (CI)	SH: IGBT4 High-Speed
TY: flow 1		PQ: PIM (CIB) with 1~ rectifier	SM: IGBT H5
		PR: PIM w/o brake (CI)	SL: IGBT F5
Press-fit Pins		with 1~rectifier	
PZ: flow 0 12 mm		PP: PIM w/o brake with PFC	
P0: flow 0 17 mm			
P1: flow 1 17 mm			
D) / C C			

Option Code (optional) Thermal Interface Material MiniSKiiP® options

ast Diode dard

Vincotech GmbH Biberger Strasse 93 / 82008 Unterhaching / Germany T +49 89 878 067-0 / F +49 89 878 067-300

www.vincotech.com