

Vincotech

DC FAST CHARGING SOLUTIONS

EMPOWERING YOUR IDEAS

CHARGING THE **FUTURE**

Vincotech is the partner of choice for power modules that support state-of-the-art topologies in a DC fast charger's power stages: the **AC/DC converter** and the **galvanically isolated DC/DC stage**.

State-of-the-art system architecture for DC chargers

Vincotech power modules are well established in many DC Charger applications from EV Charging key players who benefits from:

- / Higher switching frequency, lower filtering effort/costs
- / Multi-sourced SiC-components for more freedom of choice and less supply chain risk
- / Factor >3 improved power cycling capability for higher lifetime
- / Integrated DC capacitors to mitigate voltage overshoot
- / Press-fit pins and pre-applied TIM to help reduce production cost

Key trends/drivers in DC charger engineering:

High power charging stations

Charging will shift towards public and workplace options, as more people without access to home charging start to buy EVs. There will be a growing need for DC fast chargers with nominal power beyond 22 kW in the next years.
 Megawatt Charqing Systems (MCS) >1MW for electrical heavy-duty vehicles

Battery voltage 400V 🔶 800V

Bi-directional charging

Modular Design

- For >30 kW The modular design is more dominant than the monolithic design approach, giving the benefits of high design flexibility and scalability

Reliability
- More challenging mission profiles

Power module Solution

- for >30 kW The power module solution is more preferred than the discrete solution, thus benefiting from optimal thermal management, simplified mechanical assembly, and low parasitic inductance

Efficiency: from today 95% to 98%

WBG components are playing a key roll to achieve this goal
 3% efficiency improvement will save 2,1 billions kWh electricity per year*

DC FAST CHARGER

AC/DC Product Portfolio

- / The **front-end three-phase PFC** might be implemented in multiple topologies. It can be distinguished between two-level and three-level which have an impact on the design and the blocking voltage rating of the semiconductors.
- Three-level topologies are great for engineers seeking high efficiency at low costs.
- These topologies are designed for unidirectional charging. Three-level SPFC and NPFC can be adapted for **bidirectional** charging by replacing boost diodes with switches.

The most common three-level PFC topologies in chargers:

┍╼┻╴

ANPFC (Advanced Neutral Boost PFC)

SPFC (Symmetric Boost PFC)

Comprehensive 2L and 3L PFC portfolio for the AC/DC stage

- / SiC MOSFET and fast IGBT chip technology for high-speed switching and greater efficiency
- / Kelvin emitter for better switching performance
- Integrated DC capacitor to reduce voltage overshoot
- High-power, low-inductive package
- Temperature sensor

		ANPFC (T-Type)		NPFC (T-Type)			SPFC (I-Type)
3L-PFC		flowANPFC	flow3xANPFC	flowNPFC	flow3xNPFC	flowMNPC	flowSPFC
	flow 0	25 kW		15 kW (35 kW)*		(30 kW)*	25 kW
	flow 1	35 kW (60 kW)*	15 kW	60 kW (NEW)	20 kW		(60 kW)*
	flow 2		30 kW				
	flow E2					75 kW (NEW)	
	flow S3				(50 kW)*		
	flow E3					(50 kW)*	

		Sixpack	Half-Bridge	CSPFC
2L-PFC w/SiC MOSFET		flowPACK SiC	flowDUAL SiC	flowCSPFC
	flow 1	22 kW		
	flow E1	10 kW	40 kW	
	flow E2		100 kW	30 kW
	flow E3		150 kW (NEW)	

* in concept

flow S3 housing

flow E1 housing

DC FAST CHARGER

DC/DC Product Portfolio

The most frequently used topology in the isolated DC/DC conversion stage is the **full-bridge resonant LLC converter.** In this stage, **SiC MOSFET chip technology** is essential to meeting switching frequency (>100 kHz) and peak efficiency (>98.5%) requirements.

A 1200-V SiC MOSFET streamlines the topology by transitioning from a two cascaded interleaved LLC with 650V Si components to a single full-bridge LLC.

Full-bridge LLC converter with a full-bridge rectifier

If the application requires very high efficiency, the full-bridge [2-level] with 1200 V SiC-MOSFET would be the configuration of choice. The price decrease of this chip technology over the last years favours this option also from cost point of view

Vincotech fastPACK products

- / Integrated DC capacitor to reduce voltage overshoot
- / Kelvin emitter for better switching performance
- / SiC MOSFET and fast IGBT chip technology for high-speed switching and greater efficiency
- / Open or common emitter configuration
- / High-power, low-inductive package

Wide H-bridge SiC MOSFET portfolio for the DC/DC primary stage

H-Bridge w/SiC MOSFET		fastPACK SiC			
		650 V	950 V	1200 V	
	flow Ø		15 kW	10 kW	
	flow 1			(50 kW) *	
	flow E1			25 kW (NEW)	
	flow E2			50 kW	

tt -			fastPACK	
ridge 3T fas		650 V	950 V	1200 V
н-в w/IGE	flow Ø	22 kW (NEW)		22 kW (NEW)
	flow 1	30 kW		22 kW (NEW)

Ultrafast rectifier-bridge portfolio for the DC/DC secondary stage

		fastPACK SiC				
ge		650 V	1200 V	1700 V		
Rectifier-Bridg w/SiC Diode	flow Ø	15 kW				
	flow 1	30 kW	50 kW (NEW)			
	flow E1		25 kW	15 kW		
	flow E2		(50 kW) *			
	flow S3		50 kW (NEW)			

i dge de		fastPACK	
r-Bri t Dio(650 V		1200 V
Rectifie w/ fas [:]			30 kW
	50 kW		

New *flow*CSPFC S3 SiC

- / New Current Synthesizing PFC (CSPFC) topology for highest efficiency at lowest total system costs through
 - Reduced number of SiC devices
 - Reduced number and size of the PFC inductors
- / Latest SiC-MOSFET chip technology for high speed switching and high efficiency up to 100 kHz and >99% respectively
- / Bi-directional ready
- / Thin Al_2O_3 substrate eases the system's thermal design
- / Temperature sensor

New flowNPFC 1 SiC

- / Optimised layout/pinout for SiC MOSFET use
- Lower stray inductance
- Optimal commutation loops
- / SiC MOSFET Gen3 chip technology for high speed switching and highest efficiency

fastPACK S3 SiC

- / Ready for 400 V and 800 V battery systems
- / Latest generation SiC SBD for high switching and high efficiency
- / Optional w/ or w/o discharge switch

Vincotech GmbH

Biberger Strasse 93 / 82008 Unterhaching / Germany T +49 89 878 067-0 / info@vincotech.com

www.vincotech.com

Copyright © 2023 / Vincotech GmbH