Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CE}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_j = T_{j\text{max}}$</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>I_t limited by $T_{j\text{max}}$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$T_j \leq 150 , ^\circ C$, $V_{CE} \leq 1200 , V$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{out}</td>
<td>$T_j = T_{j\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>68</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td></td>
<td>$T_i \leq 150 , ^\circ C$</td>
<td>6</td>
<td>μ s</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$V_{CE} = 15 , V$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>$^\circ$ C</td>
</tr>
</tbody>
</table>

Features

- IGBT3 (600 V) technology
- Open emitter topology
- New ultra-compact housing
- Single-screw heat sink mounting

Target applications

- Dedicated design for motor drive

Types

- 10-0B066PA030SB-M996F09
Maximum Ratings

*\(T = 25 \, ^\circ \text{C} \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{\text{RRM}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ \text{C})</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_F)</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ \text{C})</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ \text{C})</td>
<td>53</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{\text{max}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ \text{C})</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td>(-40...+125 , ^\circ \text{C})</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}})</td>
<td>(-40...(T_{\text{max}} - 25) , ^\circ \text{C})</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{isol}})</td>
<td>DC Test Voltage (t_p = 2 , \text{s})</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>(\text{min. } 12,7)</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>(\text{min. } 12,7)</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0,00043</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{Cesat}</td>
<td>15</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{ces}</td>
<td>0</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50 µm (\lambda = 1) W/mK</td>
<td>1,41</td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{off} = 16$ Ω</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{on} = 16$ Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{on} = 16$ Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{off} = 16$ Ω</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$\lambda_{off} = 1,3$ µC</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$\lambda_{on} = 2,7$ µC</td>
<td>25</td>
<td>150</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_G</td>
<td>30 125</td>
<td>1.65 1.62</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_L</td>
<td>600 25</td>
<td>27</td>
<td>μA</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>≤ 50 μm λ = 1 W/mK</td>
<td>1.80</td>
<td>K/W</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>i_{RRM}</td>
<td>±15 300</td>
<td>25 150 27 34</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>25 150 146 253</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>di/dt = 2285 A/μs</td>
<td>25 150 1.338 2.654</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>25 150 0.290 0.568</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$di/dt</td>
<td>_{max}$</td>
<td></td>
<td>25 150 1.752 815</td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>21.5</td>
</tr>
<tr>
<td>Deviation of R_{tot}</td>
<td>ΔR</td>
<td>$R_{tot} = 1486$ Ω</td>
<td>100</td>
<td>-4.5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>3.5</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25(25)}$</td>
<td></td>
<td>25</td>
<td>3884</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25(100)}$</td>
<td></td>
<td>25</td>
<td>3964</td>
</tr>
</tbody>
</table>

Inverter Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>30</td>
<td>1.62</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>600</td>
<td>27</td>
<td>μA</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak recovery current</td>
<td>i_{RRM}</td>
<td></td>
<td>25 150 27 34</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>25 150 146 253</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>di/dt = 1902 A/μs</td>
<td>25 150 0.290 0.568</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>25 150 0.290 0.568</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$di/dt</td>
<td>_{max}$</td>
<td></td>
<td>25 150 1.752 815</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>21.5</td>
</tr>
<tr>
<td>Deviation of R_{tot}</td>
<td>ΔR</td>
<td>$R_{tot} = 1486$ Ω</td>
<td>100</td>
<td>-4.5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>3.5</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25(25)}$</td>
<td></td>
<td>25</td>
<td>3884</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25(100)}$</td>
<td></td>
<td>25</td>
<td>3964</td>
</tr>
</tbody>
</table>

Vincotech NTC Reference F
Inverter Switch Characteristics

figure 1. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

$\tau_p = 250 \ \mu s \quad T_J = 25 ^\circ C$

$V_{CE} = 15 \ \text{V}$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

$I_C = f(V_{GE})$

$\tau_p = 250 \ \mu s \quad T_J = 125 ^\circ C$

$V_{GE} = 15 \ \text{V}$

figure 3. IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

$\tau_p = 100 \ \mu s \quad T_J = 25 ^\circ C$

$V_{CE} = 10 \ \text{V}$

V_{GE} from 7 V to 17 V in steps of 1 V

figure 4. IGBT

Transient thermal impedance as function of pulse duration

$Z_{th(j-s)} = f(t_p)$

$\tau_p = 100 \ \mu s \quad T_J = 125 ^\circ C$

$V_{CE} = 10 \ \text{V}$

IGBT thermal model values

$R (K/W) \quad \tau (s)$

3,67E-02 9,82E+00
1,46E-01 1,04E+00
5,44E-01 1,78E-01
3,36E-01 4,31E-02
2,08E-01 8,55E-03
6,31E-02 9,19E-04
7,45E-02 1,51E-04
Inverter Switch Characteristics

Figure 5. IGBT Gate voltage vs gate charge

\[V_{GE} = f(Q_{G}) \]

- \(Q_{G} \) in nC
- \(V_{GE} \) in V
- \(I_{C} \) = 30 A
- \(D = \) single pulse
- \(T_{s} = 80^\circ C \)
- \(V_{CE} \leq 400 \text{ V} \)
- \(T_{j} \leq 150^\circ C \)

Figure 6. IGBT Safe operating area

\[I_{C} = f(V_{GE}) \]

Figure 7. IGBT Short circuit duration as a function of \(V_{GE} \)

\[t_{pS C} = f(V_{GE}) \]

- \(V_{GE} = 400 \text{ V} \)
- \(T_{j} \leq 150^\circ C \)

Figure 8. IGBT Typical short circuit current as a function of \(V_{GE} \)

\[I_{SC} = f(V_{GE}) \]

- \(V_{GE} \leq 400 \text{ V} \)
- \(T_{j} \leq 150^\circ C \)
Inverter Diode Characteristics

figure 1. FWD
Typical forward characteristics

\[I_F = f(V_F) \]

figure 2. FWD
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \, \mu s \)
- \(T_j = 25 \, \degree C \)
- \(T_j = 125 \, \degree C \)
- \(D = t_p / T \)
- \(R_{th(j-s)} = 1.80 \, K/W \)
- FWD thermal model values

<table>
<thead>
<tr>
<th>(R (K/W))</th>
<th>(\tau (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.95E-02</td>
<td>3.72E+00</td>
</tr>
<tr>
<td>2.06E-01</td>
<td>4.02E-01</td>
</tr>
<tr>
<td>7.04E-01</td>
<td>8.35E-02</td>
</tr>
<tr>
<td>4.39E-01</td>
<td>1.56E-02</td>
</tr>
<tr>
<td>2.12E-01</td>
<td>2.93E-03</td>
</tr>
<tr>
<td>1.68E-01</td>
<td>3.31E-04</td>
</tr>
</tbody>
</table>

Thermistor Characteristics

Thermistor typical temperature characteristic

Typical NTC characteristic

\[R_T = f(T) \]

- NTC-typical temperature characteristic

Copyright Vincotech
Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 300 \) V
- \(T_J = 150 ^\circ C \)

- \(V_{CE} = \pm 15 \) V
- \(R_{on} = 16 \) Ω
- \(R_{off} = 16 \) Ω

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 300 \) V
- \(T_J = 150 ^\circ C \)

- \(V_{CE} = \pm 15 \) V
- \(I_C = 30 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

- \(V_{CE} = 300 \) V
- \(T_J = 150 ^\circ C \)

- \(V_{CE} = \pm 15 \) V
- \(R_{on} = 16 \) Ω
- \(R_{off} = 16 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C

- \(V_{CE} = 300 \) V
- \(T_J = 150 ^\circ C \)

- \(V_{CE} = \pm 15 \) V
- \(I_C = 30 \) A
Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 150 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{CE} = \pm 15 \, V \)
- \(R_gon = 16 \, \Omega \)
- \(I_C = 30 \, A \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 150 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{CE} = \pm 15 \, V \)
- \(R_gon = 16 \, \Omega \)
- \(I_C = 30 \, A \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 300 \, V \)
- \(V_{CE} = \pm 15 \, V \)
- \(R_{pm} = 16 \, \Omega \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At
- \(V_{CE} = 300 \, V \)
- \(V_{CE} = \pm 15 \, V \)
- \(R_{pm} = 16 \, \Omega \)
Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{CE} = 300 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 30 \) A

\(T_j = 150 \) °C

Figure 10. Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{CE} = 300 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 30 \) A

\(T_j = 150 \) °C

Figure 11. Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{CE} = 300 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

\(T_j = 150 \) °C

Figure 12. Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
- \(V_{CE} = 300 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 30 \) A

\(T_j = 150 \) °C
Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current.

\[
d_i F/d_t, d_i r r/d_t = f(I_c)
\]

At

- \(V_{CE} = 300\) V
- \(V_{GE} = \pm 15\) V
- \(T_j = 150\) °C
- \(I_c = 30\) A
- \(R_{gon} = 16\) Ω
- \(R_{goff} = 16\) Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor.

\[
d_i F/d_t, d_i r r/d_t = f(R_g)
\]

At

- \(V_{CE} = 300\) V
- \(V_{GE} = \pm 15\) V
- \(T_j = 150\) °C
- \(I_c = 30\) A
- \(R_{gon} = 16\) Ω
- \(R_{goff} = 16\) Ω

Figure 15. IGBT
Reverse bias safe operating area.

\[
k = K_{MAX}\]

At

- \(T_j = 175\) °C
- \(R_{gon} = 16\) Ω
- \(R_{goff} = 16\) Ω
Switching Characteristics

General conditions

<table>
<thead>
<tr>
<th>V_c</th>
<th>$150 \degree C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>16Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>16Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for $Eoff$)

- $V_{GE}(90\%) = -15 \text{ V}$
- $V_{GE}(100\%) = 15 \text{ V}$
- $V_{C}(100\%) = 300 \text{ V}$
- $I_{C}(100\%) = 30 \text{ A}$
- $t_{doff} = 0.171 \mu\text{s}$
- $t_{Eoff} = 0.437 \mu\text{s}$

Figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for Eon)

- $V_{GE}(90\%) = -15 \text{ V}$
- $V_{GE}(100\%) = 15 \text{ V}$
- $V_{C}(100\%) = 300 \text{ V}$
- $I_{C}(100\%) = 30 \text{ A}$
- $t_{don} = 0.104 \mu\text{s}$
- $t_{Eon} = 0.259 \mu\text{s}$

Figure 3. IGBT

Turn-off Switching Waveforms & definition of f_t

- $V_{C}(100\%) = 300 \text{ V}$
- $I_{C}(100\%) = 30 \text{ A}$
- $t_{doff} = 0.12 \mu\text{s}$
- $t_{Eoff} = 0.24 \mu\text{s}$
- $t_{don} = 0.3 \mu\text{s}$
- $t_{Eon} = 0.42 \mu\text{s}$

Figure 4. IGBT

Turn-on Switching Waveforms & definition of τ_r

- $V_{C}(100\%) = 300 \text{ V}$
- $I_{C}(100\%) = 30 \text{ A}$
- $t_{don} = 0.020 \mu\text{s}$
- $t_{Eon} = 0.048 \mu\text{s}$
Switching Characteristics

Figure 5. IGBT
Turn-off Switching Waveforms & definition of tEoff

- $P_{off}(100\%) = 9.01 \text{ kW}$
- $E_{off}(100\%) = 0.91 \text{ mJ}$
- $t_{Eoff} = 0.44 \mu s$

Figure 6. IGBT
Turn-on Switching Waveforms & definition of tEon

- $P_{on}(100\%) = 9.01 \text{ kW}$
- $E_{on}(100\%) = 0.67 \text{ mJ}$
- $t_{Eon} = 0.26 \mu s$

Figure 7. FWD
Turn-off Switching Waveforms & definition of tRR

- $V_F(100\%) = 300 \text{ V}$
- $I_F(100\%) = 30 \text{ A}$
- $I_{Fmax}(100\%) = -34 \text{ A}$
- $t_{rr} = 0.253 \mu s$
Switching Characteristics

Figure 8. FWD
Turn-on Switching Waveforms & definition of \(t_{Qr} \) (integrating time for \(Q_r \))

\[I_F(100\%) = 30 \text{ A} \]
\[Q_r(100\%) = 2.65 \mu\text{C} \]
\[t_{Qr} = 0.49 \mu\text{s} \]

Figure 9. FWD
Turn-on Switching Waveforms & definition of \(t_{Erec} \) (integrating time for \(E_{rec} \))

\[P_{rec}(100\%) = 9.01 \text{ kW} \]
\[E_{rec}(100\%) = 0.57 \text{ mJ} \]
\[t_{Erec} = 0.49 \mu\text{s} \]
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-0B066PA030SB-M996F09</td>
<td>10-0B066PA030SB-M996F09</td>
<td>WWYY</td>
<td>UL VIN</td>
<td>LLLLL</td>
<td>SSSS</td>
</tr>
</tbody>
</table>

Version
- without thermal paste 17mm housing with solder pins

Outline

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.8</td>
<td>0</td>
<td>G6</td>
</tr>
<tr>
<td>2</td>
<td>24.9</td>
<td>0</td>
<td>E6</td>
</tr>
<tr>
<td>3</td>
<td>19.1</td>
<td>0</td>
<td>G5</td>
</tr>
<tr>
<td>4</td>
<td>16.2</td>
<td>0</td>
<td>E5</td>
</tr>
<tr>
<td>5</td>
<td>11.6</td>
<td>0</td>
<td>NTC2</td>
</tr>
<tr>
<td>6</td>
<td>7.6</td>
<td>0</td>
<td>NTC1</td>
</tr>
<tr>
<td>7</td>
<td>2.9</td>
<td>0</td>
<td>E4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>13.7</td>
<td>U</td>
</tr>
<tr>
<td>10</td>
<td>2.9</td>
<td>13.7</td>
<td>G1</td>
</tr>
<tr>
<td>11</td>
<td>8.8</td>
<td>13.7</td>
<td>DC+</td>
</tr>
<tr>
<td>12</td>
<td>14.6</td>
<td>13.7</td>
<td>V</td>
</tr>
<tr>
<td>13</td>
<td>17.5</td>
<td>13.7</td>
<td>G2</td>
</tr>
<tr>
<td>14</td>
<td>24.9</td>
<td>13.7</td>
<td>G3</td>
</tr>
<tr>
<td>15</td>
<td>27.8</td>
<td>13.7</td>
<td>W</td>
</tr>
</tbody>
</table>

Dimensions
- All dimensions are given in mm.
- Tolerance of wire diameters ±0.005mm is ±0.002mm at the end of pins.
- Dimension of coordinates axis is only offset without tolerance.
- Gridlines and holes are seen in handling instruction document.
Thermistor

IGBT

FWD

Component

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-T6</td>
<td>IGBT</td>
<td>600 V</td>
<td>30 A</td>
<td>Inverter Switch</td>
<td></td>
</tr>
<tr>
<td>D1-D6</td>
<td>FWD</td>
<td>600 V</td>
<td>30 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>Thermistor</td>
<td>600 V</td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow0 B packages see vincotech.com website.

Package data

Package data for flow0 B packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.