Maximum Ratings

\(T_i = 25 \, ^\circ C, \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CES})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_c)</td>
<td>(T_i = T_{j,max}), (T_i = 80 , ^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{2dn})</td>
<td>(T_i), limited by (T_{j,max})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>(T_i \leq 150 , ^\circ C, V_{ce} \leq 600 , V)</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_i = T_{j,max}), (T_i = 80 , ^\circ C)</td>
<td>34</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{ges})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{fs})</td>
<td>(T_i \leq 150 , ^\circ C)</td>
<td>6</td>
<td>(\mu) s</td>
</tr>
<tr>
<td></td>
<td>(V_{cc})</td>
<td>(V_{ce} = 15 , V)</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,max})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_s)</td>
<td>(T_i = T_{j,max}) (T_i = 80 , ^\circ C)</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{F,PK})</td>
<td>(T_i = T_{j,max}) (T_i = 80 , ^\circ C)</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_i = T_{j,max}) (T_i = 80 , ^\circ C)</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Module Properties

<table>
<thead>
<tr>
<th>Thermal Properties</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{j/op})</td>
<td></td>
<td>-40...+((T_{j,max} - 25))</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolation Properties</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>(V_{isol})</td>
<td>DC Test Voltage (t_p = 2 , s)</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,5</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min. 12,5</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage (V_{GE})</td>
<td>(V_{CE}) = (V_{CE})</td>
<td>0,00015</td>
<td>V</td>
</tr>
<tr>
<td>collector-emitter saturation voltage (V_{cesat})</td>
<td>15</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>collector-emitter cut-off current (I_{ces})</td>
<td>0</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>gate-emitter leakage current (I_{ges})</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance (r_g)</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gate capacitance (C_{ies})</td>
<td>(f) = 1 MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>reverse transfer capacitance (C_{res})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gate charge (Q_g)</td>
<td>15</td>
<td>480</td>
<td>10</td>
</tr>
<tr>
<td>Thermal resistance junction to sink (R_{th(j-s)})</td>
<td>Thermal grease thickness ≤ 50 µm (\lambda = 1 \text{ W/mK})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time (t_{ch})</td>
<td>±15</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>Rise time (t_r)</td>
<td>R_{on} = 32 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time (t_{ch})</td>
<td>±15</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>Fall time (t_f)</td>
<td>R_{off} = 32 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse) (E_{on})</td>
<td>(\theta_{on} = 0,5 \mu C)</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse) (E_{off})</td>
<td>(\theta_{off} = 0,9 \mu C)</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>

Copyright Vincotech 3
08 Feb. 2016 / Revision 2
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
</table>
| V_{GE} | $[V]$ | 25 | 1,60 | V
| V_{GS} | $[V]$ | 150 | 1,95 | V
| V_{CE} | $[V]$ | 10 | 1,56 | V
| V_{DS} | $[V]$ | 25 | 1,95 | V
| I_{C} | $[A]$ | 10 | 25 | A
| I_{D} | $[A]$ | 150 | 25 | A
| T_j | $[^{°}C]$ | Min | Typ | Max |

Inverter Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
</table>
| Forward voltage | V_t | 25 | 1,60 | V
| Reverse leakage current | I_{IS} | 150 | 1,95 | V
| Thermal resistance chip to heatsink | $R_{th(j-s)}$ | 25 | 27 | $µA$
| Thermal grease thickness ≤ 50um | $\lambda = 1 W/mK$ | 125 | 4,5 | $%$
| λ | 1 W/mK | 25 | 65 | $A/µs$
| Peak rate of fall of recovery current | $(di/dt)_{RF}$ | 25 | 0,132 | mWs
| Reverse recovered energy | E_{rec} | 125 | 0,255 | mWs
| Recovered charge | Q_r | 25 | 0,466 | $µC$
| $\Delta R/R$ | $\Delta R/R$ | 100 | -4,5 | $%$
| P | P | 100 | 210 | mW
| Power dissipation constant | $B_{(25/100)}$ | 25 | 3884 | K
| B-value | $B_{(25/100)}$ | 25 | 3964 | K
| Vincotech NTC Reference | F | | | |

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
</table>
| Rated resistance | R | 25 | 21,5 | $kΩ$
| Deviation of R_{tot} | $\Delta R/R$ | $R_{tot} = 1486 \, Ω$ | 100 | -4,5 | $%$
| Power dissipation | P | 25 | 210 | mW/K
| Power dissipation constant | $B_{(25/100)}$ | 25 | 3884 | K
| B-value | $B_{(25/100)}$ | 25 | 3964 | K
| Vincotech NTC Reference | F | | | |
Inverter Switch Characteristics

Typical output characteristics
\[I_C = f(V_{CE}) \]

- \(t_p = 250 \mu s \)
- \(V_{CE} = 15 \text{ V} \)
- \(T_j = 25 \text{ °C} \)
- \(V_{CE} = 10 \text{ V} \)

Typical transfer characteristics
\[I_C = f(V_{GE}) \]

- \(t_p = 100 \mu s \)
- \(V_{CE} = 10 \text{ V} \)
- \(T_j = 25 \text{ °C} \)

Transcendental Thermal Impedance as function of Pulse duration
\[Z_{th(j-s)} = f(t_p) \]

- \(D = t_p / T \)
- \(R_{th(j-s)} = 2.80 \text{ K/W} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.41E-02</td>
<td>7.26E+00</td>
</tr>
<tr>
<td>2.67E-01</td>
<td>6.41E-01</td>
</tr>
<tr>
<td>9.50E-01</td>
<td>1.13E-01</td>
</tr>
<tr>
<td>7.31E-01</td>
<td>1.82E-02</td>
</tr>
<tr>
<td>4.44E-01</td>
<td>3.63E-03</td>
</tr>
<tr>
<td>3.64E-01</td>
<td>3.98E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Inverter Switch Characteristics

Gate voltage vs Gate charge

\[V_{GE} = f(Q_G) \]

Safe operating area

\[I_C = f(V_{CE}) \]

Short circuit duration as a function of \(V_{GE} \)

\[t_{SC} = f(V_{GE}) \]

Typical short circuit current as a function of \(V_{GE} \)

\[I_{SC} = f(V_{GE}) \]
Inverter Diode Characteristics

Typical forward characteristics FWD

$\text{I}_F = f(\text{V}_F)$

$\text{Z}_{th(j-s)} = f(\text{t}_p)$

$\text{t}_p = 250 \mu\text{s}$

$\text{D} = \frac{\text{t}_p}{\text{T}}$

$\text{R}_{th(j-s)} = 2.85 \text{ K/W}$

FWD thermal model values

<table>
<thead>
<tr>
<th>$\text{R}_{(K/W)}$</th>
<th>$\text{R}_{(s)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.35E-02</td>
<td>9.53E+00</td>
</tr>
<tr>
<td>2.14E-01</td>
<td>7.38E-01</td>
</tr>
<tr>
<td>7.92E-01</td>
<td>1.19E-01</td>
</tr>
<tr>
<td>7.47E-01</td>
<td>1.96E-02</td>
</tr>
<tr>
<td>6.00E-01</td>
<td>3.72E-03</td>
</tr>
<tr>
<td>4.58E-01</td>
<td>4.38E-04</td>
</tr>
</tbody>
</table>

V_j: 0 5 10 15 20 25 30

I_F: 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -5

V_F: 10 100 1000 10000 20000

$\text{Z}_{th(j-s)}$: 10 9 7 5 3 1

t_p: 10 100 1000 10000 20000

$\text{D} = 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.000$

Thermistor Characteristics

Typical NTC characteristic as a function of temperature

$\text{R}_T = f(\text{T})$

NTC-typical temperature characteristic

Copyright Vincotech
Inverter Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(R_{g, on} = 32 \Omega \)
- \(I_C = 10 \text{ A} \)

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(r_g) \]

With an inductive load at 25 °C
- \(V_{in} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(R_{g, on} = 32 \Omega \)
- \(I_C = 10 \text{ A} \)

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(R_{g, on} = 32 \Omega \)
- \(I_C = 10 \text{ A} \)

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(r_g) \]

With an inductive load at 25 °C
- \(V_{in} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(R_{g, on} = 32 \Omega \)
- \(I_C = 10 \text{ A} \)
Inverter Switching Characteristics

Figure 5: IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)
- \(I_C = 10 \, A \)

Figure 6: IGBT
Typical switching times as a function of gate resistor

\[t = f(r_g) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)
- \(I_C = 10 \, A \)

Figure 7: FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(R_{gon} = 32 \, \Omega \)

Figure 8: FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(T_j = 125 \, ^\circ C \)
- \(I_C = 10 \, A \)
Inverter Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

At
- \(V_{cb} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(R_{gon} = 32 \Omega \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{cb} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(I_c = 10 \text{ A} \)
- \(T_j = 125 \degree C \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

At
- \(V_{cb} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(T_j = 25 \degree C \)
- \(R_{gon} = 32 \Omega \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
- \(V_{cb} = 400 \text{ V} \)
- \(V_{ce} = \pm 15 \text{ V} \)
- \(I_c = 10 \text{ A} \)
- \(T_j = 125 \degree C \)
Inverter Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(I_c)
\]

Figure 15. IGBT
Reverse bias safe operating area

\[
I_c = f(V_{ce})
\]
Inverter Switching Characteristics

$T_j = \text{125 °C}$

$R_{on} = \text{32 Ω}$

$R_{off} = \text{32 Ω}$

Figure 1. IGBT

Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff)

Figure 2. IGBT

Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)

Figure 3. IGBT

Turn-off Switching Waveforms & definition of tf

Figure 4. IGBT

Turn-on Switching Waveforms & definition of tr

$V_{GE}(0\%) = -15 \text{ V}$

$V_{CE}(10\%) = 15 \text{ V}$

$V_{CE}(100\%) = 400 \text{ V}$

$I_C(10\%) = 10 \text{ A}$

$t_doff = 0,159 \mu s$

$t_Eoff = 0,487 \mu s$

$t_don = 0,074 \mu s$

$t_Eon = 0,237 \mu s$

$t_f = 0,123 \mu s$

$t_r = 0,026 \mu s$
Inverter Switching Characteristics

Figure 5. IGBT

Turn-off Switching Waveforms & definition of \(t_{Eoff} \)

- \(P_{off} \) (100%) = 4.00 kW
- \(E_{off} \) (100%) = 0.45 mJ
- \(t_{Eoff} \) = 0.49 µs

Figure 6. IGBT

Turn-on Switching Waveforms & definition of \(t_{Eon} \)

- \(P_{on} \) (100%) = 4.00 kW
- \(E_{on} \) (100%) = 0.38 mJ
- \(t_{Eon} \) = 0.24 µs

Figure 7. FWD

Turn-off Switching Waveforms & definition of \(\tau_{rr} \)

- \(V_{F} \) (100%) = 400 V
- \(J_{F} \) (100%) = 10 A
- \(J_{max} \) (100%) = -7 A
- \(\tau_{rr} \) = 0.270 µs
Inverter Switching Characteristics

Figure 8.
Turn-on Switching Waveforms & definition of \(t_{Q_r} \) (integrating time for \(Q_r \)).

- \(i_f(100\%) = 10 \) A
- \(Q_r(100\%) = 0,90 \) µC
- \(\tau_p = 0,56 \) µs

Figure 9.
Turn-on Switching Waveforms & definition of \(t_{E_{rec}} \) (integrating time for \(E_{rec} \)).

- \(P_{\text{out}}(100\%) = 4,00 \) kW
- \(E_{in}(100\%) = 0,26 \) mJ
- \(\tau_{E_{rec}} = 0,56 \) µs
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Type & Ver</th>
<th>Date code</th>
<th>Vinco & Lot</th>
<th>Serial & UL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WWYY</td>
<td>Vincotech</td>
<td>SSSS UL</td>
</tr>
</tbody>
</table>

Datamatrix

<table>
<thead>
<tr>
<th>Type & Ver</th>
<th>Lot number</th>
<th>Serial</th>
<th>Date code</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYYV</td>
<td>LLLLL</td>
<td>SSSS</td>
<td>WWYY</td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.8</td>
<td>0</td>
<td>G6</td>
</tr>
<tr>
<td>2</td>
<td>24.9</td>
<td>0</td>
<td>E6</td>
</tr>
<tr>
<td>3</td>
<td>19.1</td>
<td>0</td>
<td>G5</td>
</tr>
<tr>
<td>4</td>
<td>16.2</td>
<td>0</td>
<td>E5</td>
</tr>
<tr>
<td>5</td>
<td>11.6</td>
<td>0</td>
<td>NTC2</td>
</tr>
<tr>
<td>6</td>
<td>7.6</td>
<td>0</td>
<td>NTC1</td>
</tr>
<tr>
<td>7</td>
<td>2.9</td>
<td>0</td>
<td>E4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>13.7</td>
<td>U</td>
</tr>
<tr>
<td>10</td>
<td>2.9</td>
<td>13.7</td>
<td>G1</td>
</tr>
<tr>
<td>11</td>
<td>8.8</td>
<td>13.7</td>
<td>DC+</td>
</tr>
<tr>
<td>12</td>
<td>14.6</td>
<td>13.7</td>
<td>V</td>
</tr>
<tr>
<td>13</td>
<td>17.5</td>
<td>13.7</td>
<td>G2</td>
</tr>
<tr>
<td>14</td>
<td>24.9</td>
<td>13.7</td>
<td>G3</td>
</tr>
<tr>
<td>15</td>
<td>27.8</td>
<td>13.7</td>
<td>W</td>
</tr>
</tbody>
</table>

Outline

Tolerance of pin positions ±0.05mm at the end of pins.
Dimension of coordinate axis is only offset without tolerance.
PEB cutouts and holes see in handling instruction document.
<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-T6</td>
<td>IGBT</td>
<td>600 V</td>
<td>10 A</td>
<td>Inverter Switch</td>
<td></td>
</tr>
<tr>
<td>D1-D6</td>
<td>FWD</td>
<td>600 V</td>
<td>10 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td>600 V</td>
<td></td>
<td></td>
<td>Themistor</td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.